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1. Introduction

We are currently experiencing a paradigm shift in the computing field where
more and more processing and computation is moving into the clouds and
massive scale data centers. Over the last decade, data centers have proven to
be a key enabler not only for IT, the telecommunication industry or scientific
computing, but also in banking, social media, governance and other business
processes in general. In addition, the growing importance of big data analytics
and the proliferation in the number of connected devices and Internet of Things
(IoT) have also added to the value and growth of data centers.

Such proliferation has accounted for an unprecedented number of servers being
installed in large data centers. The latest statistics from the year 2014 show that
the number of servers in such data-centers are very large. For example, Google
has around 1 million servers, Microsoft has around 200,000 servers , while
Intel has ∼ 100 thousand servers [125]. According to certain statistics [128],
the cost of powering servers is now approximately 30% of the total cost of the
ownership of such infrastructure. For such massive deployments, the increasing
power budget is a big concern for the data center operators. In 2014, data
centers in the U.S. consumed an estimated 70 billion kWh, accounting for about
1.8% of total U.S. electricity consumption [109]. Estimates suggest this number
has increased to almost 5% in 2017 [30]. The electricity consumption of data
centers increased by about 4% from 2010-2014 and a modest estimate suggests
that if the consumption continues to increase at the same rate, the data center
electricity consumption of the U.S will total around 73 billion kWh by 2020 [109].

The numbers presented above clearly indicate that energy efficiency in comput-
ing is now a big concern and one of the most crucial factors besides performance.
Energy efficiency in data centers has become one of the major concerns in the
last decade, not only because of the monetary cost, but also for reasons of environ-
mental sustainability. Electricity consumption of high-end computing systems
is constantly increasing and there is an urge to apply optimizations across all
stacks of hardware and software to achieve the best performance per watt.

The main focus of this thesis is to present efficient ways of measuring, modeling,
analyzing and managing the power consumption of computing systems. In this
research, we analyze and evaluate tools and techniques for energy measurement
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and modeling in terms of aspects like accuracy, granularity and availability. The
proposed energy modeling techniques are designed to predict the full system as
well as component specific power consumption with more accurate and reliable
results compared to the techniques currently proposed in the literature. For this,
we have leveraged Intel’s Running Average Power Limit (RAPL) [118] as an
energy measurement tool. We have also extensively analyzed RAPL as an energy
measurement tool and proposed several methods of using the tool efficiently.

1.1 Motivation

The statistical data presented in the previous section reveals that energy con-
sumption in large-scale data centers is high enough to create concern and look
for techniques and tools that can ensure more efficient use of energy as a re-
source. Energy efficiency in Information and Communication Technology (ICT)
has evolved considerably in recent years across different use cases and devices:
from servers to tablets and handheld devices. As such it is practically impossible
and infeasible to apply the same energy efficiency techniques to all of them.
This is because most of the energy efficient approaches tend to seek analytical
solutions rather than a clean slate or heuristic approach.

Energy efficiency has been one of the most important topics of research, es-
pecially in the field of battery operated hand-held and mobile devices; under-
standably because the performance of such mobile devices is constrained by
the battery life/energy spent. However traditionally electricity in server based
computing has been assumed to be an unlimited resource. This scenario, how-
ever, has been changing over the past few years and energy efficiency in high
performance computing is now constraining the performance of the systems.
This renewed interest in energy efficiency is obviously the result of the large
number of systems being installed in cloud based data centers recently, which
is not only creating concerns about the ecological impact but also the monetary
cost of maintaining such excessively large power expenditure is huge.

A computing system consumes two types of energy: static and dynamic. The
static consumption comes from mainly leakage currents incurred while powering
different subcomponents of a subsystem: computing, memory and networking
elements [100]. The static consumption depends on the size of the system.
The dynamic consumption comes from the utilization of the above mentioned
subcomponents and generally depends mostly on applications running on the
system and the operating system activities.

To achieve energy efficiency in a data center based computing environment,
it is important to eliminate inefficiencies in the way electricity is delivered to
the computing system, as well as the way system resources utilize it to execute
application workloads. Big names in the IT industry like Google are already
paying attention to optimizing their data center infrastructure to meet the
demands of ideal Power Usage Effectiveness (PUE). PUE is a measure of the
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effectiveness of a computing facility regarding how effectively it makes use of
the input energy as opposed to cooling and other overheads and the ideal value
of PUE is 1.0. Google data centers achieve an average PUE of 1.12 and the best
sites even score a PUE of 1.06 [15]. This has been possible because of the recent
advancements in data center infrastructure efficiency.

Given such a high PUE, there is still a considerable difference between the
power delivered to a computing node and the power utilized in computing. Data
center computing nodes reportedly consume 66% of peak power in an idle state
[60] and there are a significant number of resources which still remain under-
utilized, leaving room for more energy efficient usage of data center computing
resources. A survey of 188 US based data centers in 2010 reveals that on av-
erage, 10% of servers are never utilized [100]. Turning off idle servers while
not being used or sending them into some deep sleep low-power state or using
virtualization to increase the resource utilization are a few of the state of the
art approaches to tackle the issue of underutilization of resources and improve
energy efficiency [100].

Figure 1.1. Different approaches to improve the Energy Efficiency of Computing Nodes

There are several tools and techniques presented in the literature targeting
the energy efficiency of computing nodes in data centers. Figure 1.1 depicts an
overview of such approaches. Energy efficiency in a data center requires an
accurate account of energy spent inside computing nodes without interrupting
the normal operation of the system. Once we have the accounting for energy,
this information is then used to optimize the use of energy at different levels,
namely node level optimizations, grid and data center level optimizations and
cloud level optimizations.

There are different approaches to optimize the use of energy at node level,
grid level or cloud level. At the node level, operating systems can deploy energy-
aware schedulers to schedule tasks with the goal of increasing the utilization of
CPU, memory, and other critical resources and efficient use of energy to improve
the performance per watt. At the cluster or grid level, effective load management
can reduce the overall energy consumption of the cluster or grid. Ideally, en-
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ergy efficient load management techniques will place the application workloads
in the least number of servers without violating the Service Level Agreement
(SLA). This approach minimizes the energy footprint by increasing the server
utilization inside a cluster and sending idle servers into a low-power consuming
deep sleep state or turning them off. Similarly at the cloud level, virtualization
technologies aim to increase the energy efficiency of cloud infrastructure by
increasing the utilization of cloud resources using efficient resource consoli-
dation techniques. The introduction of live migration of virtual machines and
lightweight container based virtualization have added more to the overall energy
efficiency by balancing the overall loads and increasing resource utilization.

In this thesis, our particular focus is on techniques and tools for measuring the
power consumption of computing nodes. It is very important to use the optimal
technique and tool for measuring the power consumption as the accuracy of
resulting power models and energy efficient power management techniques
depends on it. This research discusses different power measurement tools
and studies Intel’s RAPL extensively with respect to accuracy, granularity,
availability and usability and also proposes different power modeling techniques
on top of RAPL. The power modeling techniques are designed to predict the
full system power consumption as well as component specific (i.e. instruction
decoder, L2 and L3 cache, etc) power breakdown inside the CPU. The models
can predict the power consumption with a negligible error rate, which shows
that RAPL can be a very effective tool for energy measurement and modeling
in server systems. In contrast, this thesis also presents and highlights the
potential drawbacks of RAPL and proposes several workarounds and possible
future enhancements.

As mentioned previously, the first step towards energy efficiency in data cen-
ters is to accurately obtain the power consumption of each individual server/
computing node. If one can determine how much power is consumed by the
computing cores, memory, and other resources inside a single node, it is then
easy to attribute power consumption per computing resource and identify power
bottlenecks. Such information can then be utilized for energy efficient scheduling
of workloads on heterogeneous computing resources to maximize the resource
usage efficiency and thus improve the performance per watt. In addition, the
subsystems that are consuming more power can be identified as power bottle-
necks which can then be tested on additional aspects to identify if it is necessary
to replace a faulty subsystem.

Power consumption inside servers can be determined by different approaches:
using external devices like energy sensors, energy meters and modeling the
power consumption with the help of performance counters and such external
devices. Until recently, measuring the power consumption of a computing
system required separate metering hardware [31]. Mounting energy sensors or
wattmeters, or instrumenting the systems with other types of energy meters
can be a cumbersome process. It might not only be a costly process but also
hinder the normal execution of the data center [100]. Besides the difficulties
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of purchasing, deploying, and using external power meters, their measuring
accuracy and granularity are usually inadequate for detailed analysis. Moreover,
dividing the power between different parts of the computing system inside the
chip is not possible.

As a result, a number of studies have been directed towards predicting and
modeling the energy consumption in large-scale data centers [95, 128]. Many
such models or prediction techniques require an accurate measure of the energy
consumption of the data center. A model based power estimation uses a set
of performance counters and a computational model to turn the performance
readings into estimates of electricity consumption. The accuracy of this approach
strongly depends on the quality of the model and typically is not able to give
good results, especially with highly fluctuating workloads [91]. McCullough et
al. [91] performed a comprehensive evaluation of power modeling of computing
systems and concluded that power modeling techniques pose several limitations
caused by the increased complexity and variability of software and hardware.
Their results motivate more towards low cost, direct, and instantaneous energy
measurement tools.

Intel’s RAPL [118] is one hardware feature which allows monitoring the energy
consumption across different domains of the CPU chip, attached DRAM and
on-chip GPU with promising accuracy. This feature has been introduced from
Intel’s Sandy Bridge architecture and has evolved in the later versions of Intel’s
processing architecture. With RAPL it is possible to programmatically get real
time data of the power consumption of the CPU package and its components as
well as of the DRAM memory that the CPU is managing. RAPL is thus a good
tool to measure, monitor, and react to the power consumption of computing. It
has potential for new and innovative ideas to better deal with the problem of the
electricity consumption of computing [114, 128]. Besides power measurement,
RAPL is most commonly known for its power limiting feature which allows to
limit the average power consumption of the RAPL power domains (which are
mainly processor components such as CPU package, cores, etc.) [118, 61]. In
this thesis, we focus on RAPL’s energy measuring functionality only.

Despite the merits and potential RAPL has, it is not clear whether RAPL also
has weaknesses in terms of measuring and monitoring the energy consumption
of various CPU components. Thus, an in-depth study of the RAPL interface
itself is still needed to reveal its underlying principles. This leaves room for
further investigation into RAPL as an energy measurement tool and the impact
of RAPL on power modeling of computing nodes based on the features of accuracy,
availability, ease of use, reliability and granularity, which is the primary focus
of this thesis. In addition, we also propose several efficient ways of modeling the
full system power consumption from RAPL measurements. We also pinpoint
several crucial factors that affect the energy consumption of data centers using
data center production logs. Our techniques identify how unsuccessful jobs
consume a considerable amount of energy in data centers, and we also propose
methods to profile the energy expenditure of applications using RAPL.
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1.2 Research Questions, Scope and Methodology

Figure 1.2. Research methodology

The existing literature has contributed a lot towards the energy efficiency
of computing nodes in a data center environment. However, tools like RAPL
have opened doors to new opportunities to tackle existing challenges in power
modeling in more effective ways. Hence, in this thesis, we ask the following
questions: How much power is consumed by a server when running application
workloads? Figure 1.2 presents the research methodology followed in this thesis
as well as the broad research questions are also discussed here.

This question, however, has a very broad scope and for the sake of keeping
the scope of this thesis realistic and achievable, we focus on scientific workloads
and customized benchmarks that exercise different components of a computing
system and simulate the application benchmark scenarios. Also, there are a
good number of tools and techniques in the existing literature targeting energy
measurement and modeling in different platforms that offer promising advan-
tages, but this thesis specifically focuses on the Intel platform and Intel’s RAPL
as a tool to measure the power consumption and model the power consumption of
the computing system. Specifically we pinpoint the following research questions,
scope and methodology:

1. Measuring the power consumption of a computing node/server running sci-
entific workloads. As mentioned in previous sections, power measurement
techniques in the literature focused on sensors, energy meters and IPMI (In-
telligent Platform Management Interface). Each of these tools have their
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advantages and issues in the specific scenarios which are discussed in later
chapters in more detail. Intel’s RAPL is one such tool which offers promising
advantages. In this thesis, we examine RAPL as an energy measurement tool
by utilizing a series of customized benchmarks and well-known application
benchmarks. To make the analysis as realistic as possible, we also leverage
production-level power measurement datasets from the Taito supercluster of
the Finnish-IT Center for Science (CSC). In this aspect, we seek to under-
stand the performance of RAPL as a power measurement tool which in turn
reveals the relationship between the power draw of a computing system and
the workload running on it. We also focused specifically on scientific work-
loads. Scientific workloads exhibit specific characteristics in terms of resource
consumption and power draw. Scientific workloads can also be scheduled in
a more flexible way as these tend to have flexible timing constraints and as
such the room for energy efficient scheduling is more compared to other High
Performance Computing (HPC) workloads.

2. Power modeling of computing system. Predicting full system power draw
of a computing system is essential information for energy efficient power
management inside the data centers. The existing power measurement tools
including RAPL do not provide the full system power consumption, but rather
they measure the power consumption of limited components (CPU, Memory) of
the computing system. Although CPU and memory consume most of the energy
spent, full system power consumption is an important input for techniques that
target energy efficiency at different levels in a data center as shown in Figure
1.1. As such, power modeling is necessary to obtain the full system power
consumption. The existing approaches on power estimation or modeling pose
several limitations caused by increased complexity and variability of software
and hardware. Their results motivate more towards low cost, direct, and
instantaneous energy measurement tools. With RAPL as a readily available
tool, it will be interesting to see how RAPL based power modeling affects
the quality of models. Besides RAPL, we should also consider the impact of
workloads on the models with Machine Learning (ML) methods that have been
lately introduced. It is also important to understand the power expenditure of
components like CPU, memory and other subsystems, which is also a point of
focus in power modeling in this thesis.

3. Analyzing the power consumption behavior of scientific computing workloads
for power optimizations. The power draw characteristics of data centers is
workload dependent. As such, it is important to understand the power con-
sumption behavior of data centers running scientific workloads. Power log
analysis along with system activity data is missing in the existing literature
which can reveal interesting information regarding energy consumption and it
can be utilized as an input for energy optimizations and energy efficient work-
load consolidation. As mentioned previously, in this thesis we leverage this
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with production-level power measurement datasets from CSC. We also analyze
the power draw of Big-Data based graph analysis frameworks like Apache
Giraph and Spark’s GraphX in this regard. Big-Data processing frameworks
have emerged lately and Big-Data based graph analysis is promising to be
one of the prominent applications for data centers. As a result, understanding
and optimizing the energy consumption of graph analysis frameworks and
platforms is an important issue. As the number of such frameworks are in-
creasing, it is important to know their differences and how to measure them.
Our analysis and results present very interesting insight into the different
aspects of the performance and energy efficiency of disk and memory-based
big data platforms with graph-based applications.

There are broadly two ways of defining the methods to solve research questions:
by formulating the problem theoretically and then solving it mathematically, or
by simulating the problem practically and then designing and testing different
solutions to measure their effectiveness. In this thesis, we follow the latter way
to conduct our research.

Our methodology specifically focuses on testing the power measurement
methodologies, building power models and evaluating the models by utilizing
a series of customized benchmarks, and well-known application level bench-
marks on real workstations and server based systems. Figure 1.2 presents the
specific methodology we followed. The state of the art literature was studied
and analyzed thoroughly to understand the problem domain and different ways
of approaching the solutions. Energy efficiency in computing has been studied
quite well and there is a large gamut of solutions which target the measurement,
modeling, and management of energy in different ways. The tools and techniques
presented in such solutions were extensively reviewed and the pros and cons
were identified either by utilizing existing surveys or by implementing them.
With that knowledge, this thesis proposes effective ways of power measurement
and modeling techniques to increase the energy efficiency.

This thesis also presents an extensive study of Intel’s RAPL as an energy
measurement tool. In this regard, the existing literature is not so comprehensive
yet. There are a few studies which evaluate the performance of RAPL but with
a limited scope. As a result, we adapt the metrics from the existing literature
that are used to evaluate other power measurement tools and define a few of our
own metrics to thoroughly understand the performance of RAPL. To evaluate
RAPL on those metrics, we not only use well known application benchmarks
like Stress-ng, Stream, Parsec and ParfullCMS but also implement a few of
our own microbenchmarks which trigger specific components inside the CPU
(for example the instruction decoder benchmark used in Publication III and
Publication VI). This broad gamut of synthetic and application benchmarks
allows us to understand RAPL’s energy measurement capabilities. In addition,
such an understanding also helped us to propose new power modeling techniques
with better accuracy and less performance overhead.
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This methodology is useful and practical as it tests the power modeling so-
lutions on real devices. The potential challenge that arises in such cases is in
applying the models and parameters to other computing systems which are a bit
different in configuration from the experimental systems. We have tried to mini-
mize this effect by applying ML techniques in our modeling solutions. Although,
it is not possible to completely mitigate this challenge, we can minimize the
effects by applying the learning techniques repeatedly on newer devices (other
than experimental devices) and evaluating the results on multiple platforms.

The scope of this thesis leaves out the following important aspects:

• The power models and other techniques proposed in this thesis for improving
the energy efficiency of computing systems depend on RAPL, which is only
available on the Intel platform. So, these solutions are not directly applicable
to platforms like AMD or ARM. However, the methods are not limited to
RAPL itself because it only needs the power consumption data of the different
components of a computing system (specifically the CPU package and DRAM
power). As such, similar models can be developed for AMD or ARM processors
as well.

• Our example applications and benchmarks do not cover all kind of data center
applications. We specifically focused on computationally intensive and memory
intensive workloads as well as other similar benchmarks or applications which
particularly simulate typical scientific workloads. The effects of other types of
applications or workloads on the energy management of data centers is not
discussed here.

• The energy efficiency of data communication in data centers is not studied in
this thesis since we focus on the energy efficiency of a computing system inside
a single computing node which in turn will affect the total energy efficiency of
data center.

• This thesis specifically focuses on energy efficiency from a software manage-
ment perspective. As such, infrastructure related measures such as efficient
cooling for data center are outside the scope of this thesis.

Given the scope of this thesis, our study in power measurement and modeling
in computing systems provides insightful knowledge and useful ingredients
for the development of solutions towards energy efficiency in a data center
environment. The methods and solutions presented here are complementary to
other solutions presented in the literature.
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1.3 Contributions

This thesis is a summary of six publications. The contributions of these publica-
tions are briefly presented here. We discuss these publication in Chapter 3 in
more detail.

Publication I provides an energy profiling module for IgProf (IgProf is an
application profiler developed at CERN) to evaluate energy consumption distri-
bution within an application. The energy profiling module samples the power
consumption of the profiled application using RAPL. Our results suggest that
the proposed energy profiling module demonstrates promising potential while
profiling the energy consumption of functions in a single-threaded application.

Publication II presents an empirical study on wall socket power consumption
and proposes a power model to predict wall power from RAPL. The proposed
power model can predict full system power for any workload with only one time
calibration with an external power meter. For this, we have used a wide range
of workloads: synthetic benchmarks (e.g., Stress-ng [75], Stream [89]), scientific
computing applications and benchmarks (e.g, Parsec [19], ParfullCMS [11]) and
the model predicts the full system power consumption of computing systems
with a promising accuracy (5.6% error rate).

Publication III proposes energy models to break down the power consumption
of processor components (e.g., instruction decoders, L1 cache, L2 cache). In this
regard, we also developed a set of microbenchmarks [62] to accurately measure
the power consumption of the instruction decoders in an x86-64 processor. Our
results show that the power consumed by the instruction decoders in an x86-64
processor is not a major contributor to the total power consumed by the processor
package.

Publication IV focuses on a comparative study on energy efficiency of two
large-scale graph processing platforms: Apache Giraph and Spark GraphX.
We compared the energy consumption of these two platforms with PageRank,
Strongly Connected Component and Single Source Shortest Path algorithms over
five different realistic graphs. Our experimental results demonstrate the energy
consumption and performance of GraphX and Giraph for different scenarios.

Publication V presents a detailed study of node power consumption and de-
scribe approaches to estimate and forecast it from a data center log of 900 nodes
from the Taito supercluster [5], CSC. With this dataset, we used different clus-
tering techniques to identify the opportunities to combine different workloads
for resources optimization. We also analyzed the failed jobs and their influence
in energy spending and provided interesting insights on modeling full system
power consumption from OS counter and RAPL values. This paper is intended to
share ideas of what can be found by statistical and ML analysis of large amounts
of data center log data.

Publication VI describes a series of experiments to analyze the RAPL tool.
We conducted a series of experiments to disclose the underlying strengths and
weaknesses of the RAPL interface on workstations, servers-based systems in
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data centers, and different instances from Amazon EC2. Our observations reveal
that RAPL readings are highly correlated with plug power, promisingly accurate
and have negligible performance overhead. We also showed that there are still
some open issues such as driver support, non-atomicity of register updates
and unpredictable timings that might weaken the usability of RAPL in certain
scenarios. For such scenarios, we pinpoint solutions and workarounds.

1.4 Structure of This Thesis

Chapter 2 presents a detailed go through of the essential background and
literature survey for understanding the topic. Our contributions are summarized
in Chapter 3. We also discuss a few possible future directions in Chapter 3.
A short discussion is presented in Chapter 4 to conclude this thesis which is
followed by the original publications.
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2. Background

This thesis presents energy efficient techniques for power measurement and
modeling in a data center environment, and in this chapter we discuss the
context concerning the overall field of this dissertation.
As this thesis focuses mostly on tools and techniques in power measurement
and modeling in a data center environment, the chapter limits its discussion
to software solutions for improving the energy efficiency in a data center envi-
ronment only. As such, efforts such as Data Center Network(DCN) architecture
optimization for energy efficiency [13, 60] and or reducing the data center energy
footprint with efficient cooling techniques [58] are out of scope.

This chapter starts with an overview of the energy consumption scenarios in
computing systems in general in Section 2.1. An overview of the related tools in
techniques for power measurement and modeling is then presented in Section
2.2 and Section 2.3.

2.1 Energy Consumption of Computing Systems

We have already mentioned that the first step towards energy efficiency in data
centers is to accurately obtain the power consumption of each individual server/
computing node. Any energy optimized technique requires a clear understanding
of the energy consumption of sub-components (CPU, memory, fan, cooling, etc) of
a computing system. Power measurement and modeling techniques are intended
to provide us with such an understanding of energy expenditure inside the
computing systems.

Earlier we discussed the division of the server based system in two parts: static
and dynamic. Dynamic consumption generally results from the utilization of
computing resources due to workloads running on them, whereas static or fixed
consumption does not depend on the workload but on the size of the system [100].
Energy efficiency techniques tend to decrease the static or fixed consumption
and increase the utilization of the resources to make the dynamic consumption
proportional to performance.

Independent research has presented breakdowns of power consumption inside
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Figure 2.1. Power consumption breakdown inside a typical data center

data center based systems [35, 110]. We present a generic overview of the power
consumption breakdown in Figure 2.1 which adapts the approximate power
consumptions of the major subcomponents from [35, 110]. Orgerie et al. [100]
provide a further breakdown of power consumption inside a typical server: CPU
consumes around 37.6%, memory consumes 16.9%, disk consumes 5.6%, PCI
slots consume 23.5% and motherboard and fans consume the rest of the 16.4%
of the total power (see Figure 2.2).

Figure 2.2. Power consumption breakdown of a typical server

This understanding of the power consumption of individual components pro-
vides a useful insight into the data center operations, such as revealing power
consumption hot-spots which can then be used to forecast the energy consump-
tion trends more accurately, optimizing the energy consumption and designing
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energy efficient data center systems. In the following sections, we will discuss
how the power consumption and modeling techniques proposed so far in the liter-
ature have approached this problem of understanding the power consumption of
different subcomponents of server based systems in a data center environment.

2.2 Power Measurement Techniques

Power Modeling

Operating System Counters

Hardware Counters

Sensors

Metering Devices
Figure 2.3. Power measurement tools and techniques overview

Accurate measurement of power consumption is one of the most important
inputs to energy efficient computing systems. Figure 2.3 represents an overview
of the data center power measurement tools and techniques discussed in the
literature. In a data center environment, power expenditure is obtained through
power metering devices or sensors [48, 3], utilization metrics such as hard-
ware counters and Operating System(OS) counters [72, 122], and finally power
modeling [35]. Direct measurements gives an account of aggregated power
consumption of electrical devices or chips in the system. Hardware counters
and OS counters also called Performance Monitoring Counters(PMCs) [124, 22]
are a non-invasive means of monitoring energy usage; they monitor the system
utilization and activities, and usually these values are then used as an input in
power modeling techniques.

A good number of existing studies in the literature have focused on energy
consumption measurements in data centers using external power meters [46, 97]
and using hardware or software instrumentation [21]. Power measurements
with power meters have the advantage of accuracy at the expense of the more
costly option of physically installing specialist hardware into the infrastructure,
while the PMCs provide indirect accounting of power consumption. The accuracy
of the power measurements are generally higher at the lower levels. Power
meters normally give the most accurate energy expenditure of the devices.
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However, meters are the slowest and most expensive option to measure and
communicate the power expenditure. Also instrumenting servers with external
meters or sensors requires physical access and this method is less portable. As
the number of servers and in turn the number of PDUs increase, it costs more to
measure with power meters and takes more time to obtain the measurements,
which can easily undermine the very goal of a data center to find a measurement
technique that is fast enough and also cost-effective.

There needs to be a defined trade-off threshold between the accuracy and the
time and cost of power measurement in data centers and it is likely to be different
for different setups. State-of-the-art processor designs include on-board sensors
for system power draw and temperature monitoring (e.g. power sensors on
Tesla K20 GPUs [25], power/thermal monitoring in AMESTER (IBM Automated
Measurement of Systems for Temperature and Energy Reporting software)
[94]). However, types of sensors mounted in the system differ from platform
to platform and have known usability issues [35]. As a result, sensor-based
power consumption measurements are not viable in data centers. A more viable
approach is to use power prediction and modeling with PMCs. Moreover, power
meters or sensors suffer from a lack of adequate power measurement granularity
and an inability to account for the power consumption to the subsystem level or
chip level (CPU cores, package, memory etc.).

There are also tools like the IPMI which report the power measurement
readings through sensors mounted with the system. IPMI provides a non-
invasive way of power measurement like PMCs and usually it is expected to
provide high accuracy in power measurement. IPMI is an interface which
relies on the sensors attached with the systems and so the accuracy of IPMI is
limited to the accuracy of sensors. Existing studies [73] have discovered that
the accuracy of such sensors is not promising, and as such these cannot be
practically used as a substitute for more accurate watt-meters on a per machine
basis. For higher accuracies, the advantage of IPMI can only be realized with
efficient power models.

PMCs expose useful system utilization metrics using hardware counters or
special purpose registers. There are hundreds of performance metrics that these
PMCs report such as the number of cycles, instruction counts, last level cache
misses, page faults, etc. In general, these metrics are counted by hardware
counters over a time interval and inform about the system utilization and
resource consumption behavior of the workloads running on the system. Tools
like Perf [2] or PAPI [118] provide interface to calculate useful performance
metrics and to profile applications to trace dynamic control flow and identify
hotspots. vmstat [6] is another such tool which exposes OS related information
about a running process such as memory, paging, block IO, traps, and CPU
activity. All of these tools can provide essential information about the energy
consumption behavior and a few of the tools are already equipped with energy
measurement and profiling with the help of energy meters, sensors, PMCs,
and also newer tools like RAPL. As discussed earlier, the use of power meters,

28



Background

sensors or PMCs is not viable in data centers with respect to accuracy, usability
and cost. However such tools and techniques are still used in power modeling
during an initial training phase and then, depending on the models, these tools
might also be used post training [70].

2.3 Data Center Power Modeling

Training Modeling Prediction

Evaluation

Figure 2.4. Data center power modeling overview

Data center power modeling can be done using two different approaches.
The first approach maps the workload operations to hardware activities. The
basic idea behind this approach is that the power consumption of a system is
governed by the workload operations, while the hardware activities that are
obtained from the PMCs give a perfect account of hardware activities. The
second approach builds up the model by statistical modeling wherein the model
tries to determine the relationship between system power consumption and
model variables. The model variables are chosen so that those variables reflect
the subcomponent level(CPU, Memory, Fan, etc) power consumption. In both
of these two approaches, the modeling process starts by training the system
with initial data which constitutes the raw power consumption values and
then identifying the subcomponents which consume most of the energy such
as the CPU or memory (termed as features). The second phase is the model
construction form where the selected features are used to constitute the model
using techniques such as ML or regression analysis. The model construction
process also validates the model to make sure the model fits the model variables
and to check whether or not it is useful. The prediction phase actually predicts
the power consumption of the system. The evaluation process usually evaluates
the predictability of the model, based on which the model can learn and if
necessary be tuned. This feedback operation might then be used to train the
models again, but this depends mostly on the modeling approach. Figure 2.4
presents an overview of the data center power modeling approach.

As stated in Section 1.1, a computing system consists of several electrical
devices and the power consumed by these devices can be divided into two parts
as:

Ptotal = Pstatic +Pdynamic (2.1)
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In Equation 2.1, static power corresponds to leakage current mainly as leakage
current incurs even when the transistors in the circuits are switched off. As
the number of transistors in processors is on the increase, the amount of static
power is becoming quite substantial [35]. The dynamic power in Equation 2.1
also constitutes negligible leakage current, but it primarily results from the
utilization of the devices and it can be expressed as:

Pdynamic = ACV 2 f (2.2)

In Equation 2.2, the dynamic power is shown as the capacitive power, which
depends on the switching activity A, the capacitance C, the supply voltage V and
the clock frequency f [126]. The supply voltage V and the clock frequency f are
major contributors to a computing system’s overall power consumption and, as a
result, these parameters have been targeted in techniques like Dynamic Voltage
Frequency Scaling (DVFS), which is a widely used energy efficiency technique
in modern day computing systems. Although, the digital circuit level models
presented in Equations 2.1 and 2.2 have proven to be useful and accurate, such
models are not adequate for the purpose of abstracting the energy consumption
of components inside a server.

The servers inside a data center perform most of the computing or productive
tasks and these servers are organized as components. As such, it is more effective
to identify and model the power consumption of the components that constitute
a server to get an idea about the total power consumption of a server. As shown
in Figure 2.2, the typical power consuming components inside a server are: CPU,
memory, disks, PCI slots, motherboard and fans. Component specific power
models in the literature have tried to estimate the energy consumption of servers
by additive models in which the power expenditure of the sub-components
are identified by regression techniques or non-parametric functions or other
statistical methods [35].

A commonly used power modeling approach is to involve the utilization of a
sub-component at a given time with a component specific co-efficient. Equa-
tion 2.3 presents a simplified model for a utilization based power modeling
approach where ucomponent is the utilization of the component and Ccomponent is
the coefficient.

Ptotal = CCPUuCPU +Cmemoryumemory +Cdiskudisk + ... (2.3)

Economou et al. [43] and Alan et al. [12] describe the full system power
consumption that utilizes sub-components as presented in Equation 2.3. The
co-efficients in such approaches are generally determined by linear regression
analysis, which means these co-efficients are generally server or architecture
specific. In some approaches, the idle power consumption is also determined
by a separate co-efficient. Economou et al. [43] determine the ucomponent using
the system utilization metrics. Their proposed power prediction system called
Mantis requires a one time calibration with external power meters.
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Beloglazov et al. [16] determine the utilization of the CPU as a function of
time as presented in Equation 2.4 since the utilization of the CPU is variable,
and this variability is largely dependent on the workload. In Equation 2.4, the
energy consumption E is presented as an integral over a period of time between
t0 and t1.

E =
∫t1

t0
P(u(t))dt. (2.4)

Most of the server power modeling approaches proposed in the literature follow
either additive or utilization based techniques. In addition, state-based power
modeling approaches [78], queuing theory-based power modeling approaches
[53], and a few other approaches have also been used in different contexts of
server power modeling. Dayarathna et al. present a detailed analysis of these
approaches in [35].

2.4 Techniques and Tools for Improving Energy Efficiency in
Scientific Computing

Scientific computing is a major application area in HPC. Scientific computing
involves massive scale mathematical models and numerical calculations which
are typically very complex and require not only HPC but also massive storage
[36]. As an example, the Large Hadron Collider (LHC) experiment in CERN,
which is operated by the European Organization for Nuclear Research, produces
600 million particle collisions per second and physicists have to analyze approx-
imately 30 petabytes of data annually to record specific particle physics [27].
For this massive data to be collected, analyzed and distributed to physicists
all over the world, CERN uses the Worldwide LHC Computing Grid (WLCG),
which is a distributed computing infrastructure. WLCG is arranged in tiers
with the Tier-0 residing in CERN itself, and, according to a recent report [28],
the organization is using 1.3 terawatt hours of electricity annually, the bulk of
which is needed for the power hungry computing systems in the Tier-0 of the
WLCG. Understandably, CERN, like other scientific bodies that have computing
systems, is also paying attention to energy efficiency.

As stated earlier, scientific computing often involves complex mathematical
models and calculations for which it requires large-scale storage capacity and
high-end processing systems. Traditional data center based computing models
are proving to be inadequate for such massive-scale data movement and pro-
cessing, especially with a low energy budget. Instead, distributed computing
platforms like Hadoop and Spark are now taking over the traditional computing
model because of scalability and performance per watt [52]. And of course the
Cloud Computing paradigm and service models magnify these advantages, not
only because of the reduced cost of ownership but also because they provide
more reliability and elasticity.
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Over the years, there have been different techniques discussed in the literature
that address the question of energy efficiency in scientific computing. These tech-
niques couple both the software as well as the hardware enhancements. Since
scientific computing involves a large number of similar and simple mathematical
operations on massive scale data, hardware accelerators like Graphics Process-
ing Units (GPUs) and Field-Programmable Gate Arrays (FPGAs) are used in
conjunction with CPUs to reduce energy consumption and improve performance
[83]. GPUs are specifically designed for intensive multimedia applications which
involves parallel and simpler arithmetic operations on a large amount of data.
This phenomenon makes GPUs well suited for scientific applications. Mittal et
al. present an extensive survey of methods for improving energy efficiency in
computing using GPUs [93].

In addition to accelerators, there have also been a considerable emphasis in
the literature on using ARM based systems for general purpose HPC [7, 10, 102]
to improve energy efficiency. ARM gained immense popularity in the power
constrained hand-held device market for its energy efficiency, and it has slowly
but steadily entered the general purpose computing market. Abdurachmanov
et al. in [7, 10] have showed that ARM based clusters perform very well for
compute-intensive tasks and show good potential for energy efficient processing
of scientific applications. There are of course scenarios where Intel based systems
outperform ARM based platforms since Intel is also evolving and adapting energy
efficiency as a crucial design goal in its architecture. There are, however, certain
scenarios and workloads where ARM performs better than Intel in terms of
energy efficiency although Intel outperforms ARM in other cases. This allows to
incorporate both hardware architecture under the same computing platform and
provides energy-efficient scheduling algorithm for workloads so that applications
which prefer one architecture over the other, are scheduled to run on it to reduce
the overall energy consumption. Li et al. [82] proposes an energy efficient
scheduling algorithm to schedule tasks on heterogeneous computing platforms.

An accurate understanding of energy spent is the basis for providing energy
efficiency at the application level. As such, energy measurement tools are a
crucial factor and the accuracy of any energy-efficient system lies on the accuracy
and effectiveness of the energy measurement tool. As discussed earlier, in server
based systems, power consumption is determined by either external tools such as
energy meters, sensors or by mathematical tools such as energy models. These
methods lack either granularity or measurement accuracy. McCullough et al.
[91] showed that power modeling techniques suffer from several limitations
caused by complex and variable software and hardware. These can be mitigated
by providing direct and instantaneous energy measurement at the chip level
with a higher granularity and less performance overhead. Intel’s RAPL is one
such hardware feature which monitors the energy consumption of different
components of the CPU and on-chip GPU with promising advantages. We will
discuss more about RAPL in the following section.
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2.5 RAPL Interface

The RAPL interface was first introduced into the Intel Sandy Bridge architecture
and it has evolved since then in subsequent iterations of the Intel architecture.
The motivation behind RAPL is to expose the energy consumption across dif-
ferent CPU domains and limit the power consumption of the domains based
on the system’s power budget. In this regard, RAPL provides two essential
functionalities: firstly, it provides energy consumption measurements at a high
granularity and high sampling rate and, secondly, it allows capping the average
power consumption of different CPU components, which essentially limits the
thermal output of the CPU [118, 61]. In this thesis, we have particularly focused
on energy measurement functionality.

RAPL supports multiple power domains and the exact number of supported
RAPL domains depends on the processor architecture. In the context of RAPL,
a power domain is a physically meaningful domain (e.g. Processor Package,
DRAM, etc) for power management. Each power domain performs the following
tasks:

• measures the energy consumption of the domain,

• allows limiting the power consumption of that domain over a specified time
window,

• monitors the performance impact of the power limit and

• offers some other useful information such as energy measurement units,
minimum or maximum power supported by the domain [68].

Figure 2.5 shows the hierarchy of the power domains graphically. Depending
on the processor architecture, RAPL provides all or a subset of the following
power domains:

• Package: Package (PKG) domain provides the energy consumption mea-
surement of the entire socket. It includes the consumption of all the cores,
integrated graphics and also the uncore components (last level caches, memory
controller).

• Power Plane 0: Power Plane 0 (PP0) domain provides the total energy
consumption measurement of all the processor cores on a single socket.

• Power Plane 1: Power Plane 1 (PP1) domain provides the energy consump-
tion measurement of GPU on the socket.

• DRAM: DRAM domain provides the energy consumption measurement of
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Figure 2.5. Power domains supported by RAPL (Publication VI)

Random Access Memory (RAM) attached to the integrated memory controller.

• PSys: Intel Skylake has introduced a new RAPL Domain named PSys. It
monitors and controls the thermal and power specifications of the entire
SoC and it is particularly useful when the source of power consumption is
neither the CPU nor the GPU. As Figure 2.5 suggests, PSys includes the power
consumption of the PKG domain, System Agent, PCH , eDRAM and a few
more domains on a single socket SoC.

For multi-socket server systems, each socket reports its own RAPL values. For
example, a two-socket computing system has two separate PKG readings, PP0
readings, PP1 readings, and so on for both the PKGs.

Not all the domains in Figure 2.5 are present in all Intel architectures. As
mentioned earlier, the number of RAPL power domains supported varies by
processor architecture. Table 2.1 presents an overview of RAPL domains sup-
ported by different processor model. Server models do not support PP1, it is
present only in desktop models. Starting from Haswell, the DRAM domain is
also supported in desktop models. PP0 and PP1 are not supported in the Haswell
server models. It means only PKG domain is the universally supported power
domain. In the case of Skylake, unlike PKG, PSys requires additional system
level implementation, and so it is not supported in all Skylake versions.
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Table 2.1. RAPL power domains (Publication VI).

Power domain supported?

Model PKG PP0 PP1 DRAM PSys

Sandy Bridge Yes Yes Yes No No

Sandy Bridge-EP Yes Yes No Yes No

Haswell Yes Yes Yes Yes No

Haswell-EP Yes No No Yes No

Skylake Yes Yes Yes Yes Yes*
*Not All Skylake versions support PSys

The RAPL energy counters can be accessed through Model-Specific Registers
(MSRs) which are 32-bit registers, and these registers report the energy con-
sumed from the time the processor was booted up. The counters are updated
approximately once every millisecond. The energy is calculated in multiples
of model-specific energy units. Sandy Bridge uses energy units of 15.3 micro-
joules [61], whereas Haswell and Skylake uses units of 61 microjoules. In some
CPU architectures such as Haswell-EP, DRAM units differ from CPU energy
units. The units can be read from specific MSRs before doing energy calculations.
There is no specific implication of different energy units in the case of different
architectures.

The MSRs can be accessed directly on Linux using the MSR driver in the
kernel. Listing 2.1 shows an example of this. For direct MSR access, the MSR
driver must be enabled and the read access permission must be set for the driver
[118]. Reading RAPL domain values directly from MSRs requires detecting
the CPU model and reading the RAPL energy units before reading the RAPL
domain (i.e. PKG, PP0, PP1, etc.) consumption values.

Listing 2.1. Reading RAPL PKG energy using the MSR method on Haswell (Publication VI).

uint64_t msr_value ;
/* Haswell : units o f 61 microjoules */
/* MSR_PKG_ENERGY_STATUS i s at address 0x611 */

double energy_units = pow( 0 . 5 , 14 ) ;
int fd = open ( " / dev / cpu / 0 / msr" , O_RDONLY) ;
i f ( fd < 0) {

perror ( " open " ) ;
return −1;

}
i f ( pread ( fd , &msr_value , 8 , 0x611 ) < 0) {

perror ( " pread " ) ;
return −1;

}
double energy = msr_value * energy_units ;
pr in t f ( "%f\n" , energy ) ;

Once the CPU model is detected, the RAPL domains can be read per PKG
of the CPU by reading the corresponding ’MSR status’ register. For example,
MSR_PKG_ENERGY _STATUS holds the energy readings for PKG domain.

35



Background

There are basically two types of events that RAPL events report: static and dy-
namic events. Static events reported by RAPL events are thermal specifications,
maximum and minimum power caps, and time windows. The RAPL domain
energy readings from the chip such as PKG, PP0, PP1 or DRAM are the dynamic
events reported by RAPL.

Apart from directly reading MSRs, RAPL readings can also be read from sysfs
interface, perf events or through the PAPI library. RAPL supports for sysfs pow-
ercap interface is enabled from Linux Kernel version 3.13 and perf_event_open
support requires Linux Kernel version 3.14. The PAPI library is used for gath-
ering performance-related data. It is platform independent and it has a RAPL
interface which uses the MSR driver to report RAPL values.

2.5.1 RAPL in the Literature

RAPL is a useful energy measurement tool for its high frequency and high energy
power consumption reporting. Despite the merits and potential, RAPL also has
some weaknesses in measuring and monitoring the energy consumption of the
various CPU components. Thus, an in-depth study of the RAPL interface itself
is still needed to reveal its underlying principles. In this thesis, we conducted
a thorough study of RAPL by utilizing a series of customized benchmarks, and
two well-known application level benchmarks, Stream and ParFullCMS. To
make the analysis as realistic as possible, we leveraged two production-level
power measurement datasets from the Taito supercluster from CSC and also
use five different instance types from Amazon EC2 as testbeds. In addition, the
scientific community has also discussed RAPL’s performance and its capability
as an energy measurement tool.

Hähnel et al. [57] did an evaluation of RAPL to find our whether it can
measure the energy consumption of short code paths. This showed that RAPL
registers do not update precisely every millisecond but instead the updates have
some jitter. They also compared the RAPL measurements (Sandy Bridge) with
external measurements with a manually instrumented board and showed that
RAPL measurements do correlate nicely with external measurements with a
fixed offset.

Hackenberg et al. [56] provided a comparison of power measurement tech-
niques highlighting RAPL as an energy measurement tool. This work pointed
out that the RAPL updates have no timestamps associated with them, which
can lead to significant inaccuracies when sampling the RAPL counters. They
also showed that the RAPL implementation in Sandy Bridge-EP suffers from
systematic errors.

Hackenberg et al. [55] presented an in-depth study of RAPL on the Intel
Haswell-EP platform. This study also included a comparison of the accuracy
of RAPL between Sandy Bridge-EP and Haswell-EP. The results showed that
Haswell had improved RAPL measurements. They also showed that the RAPL
measurements correlated very well with full sytem power measured with exter-

36



Background

nal meters.
Ilsche et al. [66] compared different power measurement techniques, includ-

ing RAPL and showed that the key advantages of RAPL include: lower cost,
availability and the ability to measure the PKG power consumption.

Huang et al. [64] evaluated RAPL for Haswell-EP processors and compared
it with traditional power monitoring tools. They showed that monitoring with
RAPL by the Performance Application Programming Interface (PAPI) can con-
sume 28.6% more power than an idle system. This is, however, when RAPL is
monitored with all its 28 attributes and not all of these attributes are related to
power or energy monitoring. They also claimed that if RAPL is monitored with
selected attributes (PKG, PP1, PP0 etc), it can reduce this power overhead by
90%. These measurements, however, do not account for the PAPI library’s power
consumption and different granularities of the RAPL measurements will also
affect the energy overhead.

Spencer et al. [37] validated the RAPL DRAM values. Zhang et al. [130] have
validated RAPL’s power limiting features based on stability, accuracy, settling
time, overshoot, and efficiency. They have shown that RAPL power limiting
performs well in terms of accuracy, settling time, overshoot and stability. They,
however, argue that RAPL power limiting can underperform at low power limits,
and with high power limits it can achieve performance which is within 90% of
optimal.

Apart from these, there is a large amount of literature [39, 40] which inde-
pendently verifies the accuracy of RAPL readings with different workloads,
architectures, systems and settings. RAPL has also been quite extensively
used in energy profiling [118, 85], full system power modeling [77], applica-
tion level power modeling [128], and power limiting under different scenarios
[131, 104, 115].

2.6 Summary

In this section, we have discussed the techniques and tools used for power mea-
surement and modeling of server based computing systems. Our discussion on
the energy consumption of computing systems covered the power consumption
breakdown inside data centers as well as the power consumption breakdown in-
side a typical server. The discussion on power measurement techniques covered
different aspects of power measurement and how they rely on hardware coun-
ters, sensors, and metering devices, and how they impact the accuracy of power
modeling. We also summarized the data center power modeling approaches
discussed in the literature which covered the DVFS, additive models as well
as the utilization based power models. Then we included a brief discussion on
the techniques and tools utilized in scientific computing for improving energy
efficiency. In this context, we discussed hardware accelerators (GPUs or FP-
GAs), different hardware architectures (ARM, Intel), and utilizing heterogeneity
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to achieve improved performance per watt. Lastly, we introduced RAPL as
an energy measurement tool. The discussion on RAPL presented the RAPL
interface and also included the literature on the utilization and validation of
RAPL. We did not discuss the in-depth literature survey for the different power
management methods for data center energy efficiency for which we refer to the
surveys [35, 76, 59, 20].

38



3. Measuring and Modeling Energy
Consumption of Computing Systems

This chapter discusses a summary of the published contributions of this thesis.
The contributions include: porting RAPL to the Ignominous Profiler(IgProf) [65]
to profile the energy consumption of an application, modeling the power con-
sumption of computing systems, validating RAPL measurements with extensive
evaluation, and utilizing RAPL to analyze the energy efficiency of large-scale
graph processing platforms, namely Apache Giraph and Spark’s GraphX. The
contributions presented in Publication I and Publication II have answered the
first research question posted in Section 1.2 by providing an accurate account
of the power consumed in computing systems. Publication II, Publication III,
Publication V and Publication VI address the second research question by pro-
viding sufficiently accurate models for full-system power consumption as well as
a component level power breakdown. Lastly, Publication IV and Publication V
have focused on proposing diverse analysis techniques of the power consump-
tion of computing systems as well as Big-Data processing frameworks to reveal
interesting insights for power optimization and, thus, address the third research
question. We also discuss the open questions and list possible future directions
at the end of this chapter.

3.1 Energy Profiling Using RAPL

The energy efficiency of a software application can be substantially improved
through changes in the program code itself. The first step towards writing an
energy efficient piece of code is to identify the energy hotspot in the program
which is consuming a considerable amount of energy compared to the other
modules or functions. For such an understanding, we often require a tool
which will profile the application for function or modular level energy spending.
Application energy profilers have been a popular tool for identifying the energy
hotspots of mobile applications because of the limited battery capacity [63]. For
HPC or scientific workloads, there are a good number of performance profiling
tools like gprof [49], Oprofile [99] or Intel’s VTune[67], even though the energy
profiling capacity was missing. We leveraged the idea of providing an energy

39



Measuring and Modeling Energy Consumption of Computing Systems

profiler for scientific workloads and proposed an energy profiling module on top
of IgProf, which is presented in Publication I.
We chose IgProf because it operates completely in user space and it can handle
dynamically loaded shared libraries. In order to provide the energy profiling
on top of IgProf, we leveraged the PAPI [118] library. This gives the advantage
of indirect access to RAPL MSRs and thus allows decoupling IgProf from the
msr kernel module. It means that when new energy measurement features like
RAPL become available, it would be easily attachable to IgProf using PAPI.
The profiling module consists of five steps which are stated in Publication I. Once
the module is initialized, the RAPL MSRs are read through four counters which
hold the energy consumption of the CPU PKG, PP0, PP1 and DRAM domains
at specified time intervals. The operating principles of the profiles is presented
in Figure 3.1. As the energy profiling module is based on the performance
profiling module of IgProf, both of the modules sample the respective counters
(performance and energy) at regular intervals. The energy profiling module has
a signal handler which queries the RAPL counters as well as the current location
of execution at certain intervals. The difference between the two consecutive
energy readings is then attributed to the current location of execution.

E

t

amount of
energy

sampling interval
∼5 ms

update interval of
RAPL registers

∼1 ms

Figure 3.1. Energy Profiling Module Principles (Publication I)

The energy profiling module was evaluated in two ways : firstly the total
energy consumption of an application was measured with our profiler and a
standalone energy measurement tool, and secondly the energy profile of the
application was compared with the performance profile. The measurements
were conducted on an Intel Core i7 processor based desktop system using the
Stream [89] benchmark and a piece of the scientific application used in the
Compact Muon Solenoid (CMS) experiment in CERN. In the case of the single
threaded Stream, the measurements from both the tools were almost identical
and the performance and energy profiles also matched each other. In the case
of the scientific application from CMS, the energy measurements also matched
with both of the tools although the performance profile and the energy profile
did not show any correlation. We assume that the multiple threads of the CMS
application caused this since our energy profiling module does not take into
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account multiple threads or processes. Our tool also suffered from short pieces
of codes which executed faster than 1 ms which is the sampling rate of RAPL.
This was, however, a first attempt to show that RAPL can be utilized in energy
profilers without introducing any performance overhead when compared to the
methods proposed in the literature [57].

3.2 Modeling Power Consumption Using RAPL

Data center power modeling has been extensively surveyed in the literature
[91, 35]. The modeling techniques mostly suffer from poor subsystem power
models due to increased system complexity and expensive instrumentation.
RAPL mitigates these problems to a considerable extent since it does not require
instrumenting the system with expensive meters and sensors and also it exposes
finer level details of energy consumption of the components inside the CPU. We
have tried to model the full-system power modeling as well as the subsystem
level power modeling by using the linear, additive, and statistical methods which
are presented in Publication II, Publication III, Publication V and Publication
VI.
To formulate the models we have used a comprehensive list of workloads, namely
synthetic benchmarks: Stress-ng [75], Stream [89], non synthetic scientific ap-
plication workloads: Parsec benchmark suite [19], ParFullCMS [11], our own
microbenchmarks 1, and also two large data sets from log traces of the Taito
supercluster from CSC, Finland. The experiments were performed in desktop,
workstation, and in server based systems and the processor architectures were
Intel’s Sandy Bridge, Haswell and Skylake.

3.2.1 Modeling Wall Power From RAPL

At first we discuss the linear regression based power model presented in Pub-
lication II. In our experiments with RAPL and DVFS, we observed that when
the frequency of the system is reduced or increased to optimize the power and
performance, the PKG power reported by RAPL correlates with full-system
power consumption. In fact, the correlation coefficient between the PKG power
and full-system power obtained through an external power meter is almost
always 0.99. This high correlation can be seen in Figure 3.2 where a near exact
linear relationship between the PKG power and full-system power (termed ’wall
power’ in the figure and throughout this discussion) was observed when we ran
different applications of the Parsec benchmark suite. We also observed that
although the linear model had an excellent fit, the regression coefficients varied
for different workloads. Thus, we developed an approach to calibrate the model
for any arbitrary workload.

1https://github.com/mhirki/rapl-tools
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Figure 3.2. Correlation between PKG power and wall power-Parsec (Publication II)

The generic power model for wall power consumption was built using the least
square regression solution and ML. We divided the power consumption data in
two subsets, used the first subset for training and validation and the second
for testing the accuracy of the formulated model. The model was formulated as
follows:

N∑
t=1

wallt yj(pkgt) =
N∑

t=1

k−1∑
i=0

ai · yi(pkgt)yj(pkgt) (3.1)

where
N is the number of observations of PKG power and wall power pairs (pkg,wall),
f :R→R is an objective function which calculates wall power from PKG power
and the aim is to minimize the error,
yi :R→R is a basis function,
A = (a0, ...,ak−1) is a 1×k vector and
j varies from 0 to k−1.

The detailed mathematical formulation is presented in Publication II. We
solved the equations for different orders of polynomials k, where k varies from
1 to 4 although we already observed the inductive bias which is the existence
of the linear relation between the RAPL PKG and wall power. This was done
to test the generalization of our assumptions as we tested different orders of
polynomials on our data set to see whether the linear relationship holds also for
a diverse workload mix in comparison to higher order polynomials. The obtained
power model for a Haswell based workstation is:

Pwall = 1.227∗Ppackage +22.084 (3.2)

Equation 3.2 can predict the wall power consumption with an accuracy of
a 5.6% error rate in the worst case for the test machine we used. This mod-
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eling technique requires a one time run of the benchmarks with the external
AC-power measurement equipment connected for a single machine. This is
necessary to generate the training and validation dataset. In scenarios where
components other than the CPU are conducting bulk of the system operations,
the above approach might not work, for example, a file server with multiple disks
performing a disk intensive task, or a server with a separate (non-integrated)
GPU processor where the processing is executed by the GPU rather than the
CPU. For these cases, the wall power consumption can be estimated using the
following equation:

Pt = Pi +PRAPL +Pdisk (3.3)

where Pt is the wall power consumption at time t, Pi is the wall power con-
sumption when the system is idle, PRAPL is the difference of power consumption
between the operating mode and idle mode in the RAPL domain, and Pdisk is
the difference of power consumption between the operating mode and idle mode
of the disk drive.

3.2.2 Modeling Power Consumption of x86-64 Instruction Decoder

We also focused on modeling the power consumption of the CPU subcomponents,
and for this we chose the instruction decoder. This idea was motivated by the
myth that x86-64 processors suffer in terms of energy efficiency because of their
complex instruction set. To model the power consumption of the instruction
decoders, we designed a set of microbenchmarks which specifically trigger the
instruction decoder. For the experiments, we used Intel’s Haswell micropro-
cessor since it includes the micro-operation(μ-op) cache which was introduced
to optimize performance and provide energy efficiency while decoding. Our
microbenchmarks are carefully designed to exceed the capacity of the μ-op cache
and trigger the instruction decoder. A detailed discussion on this is presented in
Publication III.

Table 3.1. Performance events utilized in the linear regression modeling (Publication III).

Event name: Description:

CPU CLK UNHALTED.THREAD P Number of clock cycles for each core

UOPS ISSUED.ANY Number of μ-ops issued to the exec. units

IDQ.MITE UOPS Number of μ-ops produced by the decoders

MEM LOAD UOPS RETIRED.L1 HIT Number of hits in the L1 D-cache

L2 RQSTS.REFERENCES Number of requests to the L2 cache

We used regression modeling to model the power consumption of the instruc-
tion decoder. Table 3.1 lists the performance events collected for the power
modeling. We used in total around 49 different variants of our micro bench-
marks and developed two different use-cases for developing the power model.
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The use cases were inspired by experiments which revealed the maximum and
the minimum energy consuming configurations of the benchmarks.

Ppackage = 6.05+ cycles
second

×1.63×10−9 + μop issued
second

×2.15×10−10

+μop decoded
second

×1.40×10−10 + L1 hits
second

×4.35×10−10

+L2 re f erences
second

×4.05×10−9 (3.4)

Equation 3.4 above presents the power model of the CPU PKG power in terms
of different CPU components obtained from the regression modeling. The model
can predict the CPU PKG power with a coefficient of determination (R2) ≡ 0.989.
In the process of deriving the power model, we also experimented with two
different scenarios: Scenario 1 used the microbenchmarks to trigger high power
consumption from L2 and L3 caches and scenario 2 used the microbenchmarks
to trigger high power consumption from the instruction decoder. Using these two
scenarios, we generated power breakdowns inside the CPU components. The
detailed power breakdowns are presented in Publication III. These experiments
revealed that the instruction decoders consume power within a range of 3%-
10%. We also showed that the power consumed by the decoders is less than the
power consumed by other components such as the L2 cache, which consumed
22% of PKG power. The take away from this discussion is that for the modern
day x86-64 processors, the instruction decoder is not a bottleneck for power
consumption.

3.2.3 Power Modeling using OS Counters and RAPL

In this section, we present our power modeling approach using OS counters
and RAPL values. For power modeling, we leveraged two production logs from
a data center of 900 nodes. The first dataset was captured at a frequency of
approximately 0.5Hz over a period of 42 hours, and the second dataset was
captured at a frequency of 0.2Hz over 10 days from the Taito supercluster [5],
CSC, Finland. Among the 900 nodes, there are approximately 460 Sandy Bridge
compute nodes, 397 Haswell nodes, and a smaller number of more specialized
nodes with GPUs and large amounts of memory or fast local disks for I/O
intensive workloads. The dataset consists of vmstat output [6], RAPL PKG
power readings, plug power obtained from the IPMI and job IDs. The hardware
configurations of Taito’s compute nodes can be found in Publication V. Our power
modeling techniques using these two datasets are presented in Publication V
and Publication VI.
At first, we used a ML technique to predict the full-system power consumption
with the first data set. For this, we sampled 2% of data from all the Haswell
nodes (251,244 data samples) and evaluated the performance of different ML
algorithms on it using a standard 10-fold cross validation approach. The best
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Table 3.2. Power estimation using random samples from first data set (Publication V)

Correlation coefficient (corrcoef) 0.97

Mean absolute error (MAE) 3.12

Root mean squared error (RMSE) 9.11

Relative absolute error (RAE) 12.25%

Root relative squared error (RRSE) 21.83%

Total Number of Instances 251244

result was achieved using Random Forest [23] as shown in Table 3.2. The model
can predict the full-system power consumption with a Mean Absolute Error
(MAE) of 3.12. A more detailed description of this approach can be found in
Publication V.

Secondly, we found that the distribution of the plug variable did not match well
with any common theoretical distribution. However, the normal distribution
gave the best results when we used regression modeling. As such, we first
fitted a linear model for estimating the plug power consumption using the RAPL
parameters. For this approach, we took a sample of 30,000 measurements
focusing on the ’Haswell’ type computing nodes. 80% of the samples were used
for the training set and the remaining 20% for the test set. We formulated the
model using the following equation:

f (x)= a0 +a2CPU1+a3CPU2+a4DRAM1+

a5DRAM2+ e
(3.5)

where the ais are the coefficients of the variables and e is the error term. This
model gave 2.10% Mean Absolute Percentage Error (MAPE) on the test samples.
This model, however, did not take the non-linear relationships amongst the
variables into account. For this, we applied a Generalized Additive Model (GAM)
using the following equation:

g(u)=β0 + f1(CPU1)+ f2(CPU2)+ f3(DRAM1)+ f4(DRAM2)+ e (3.6)

where β0 is the intercept, f i smooth functions, e is the error term, and g() is the
link function. Using this model, the MAPE dropped slightly to 1.97%.

We used the same linear modeling and the GAM modeling approach on the
second data set. The results were slightly better when compared to the first
dataset, but comparing the result of the first dataset ultimately turned out to be
inconclusive because of the different sampling rates. We also tried to model the
power consumption of the Sandybridge nodes from the dataset using the same
techniques. The results with Sandybridge were slightly worse than Haswell:
MAPE 4.3% in linear modeling and 4.0% for GAM modeling. Sandybridge nodes,
however, do no support DRAM values and hence it was not included in the
analysis for the Sandybridge architecture. Therefore, we also tested whether
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Table 3.3. Job Statistics - Total of 809178 jobs (Publication V)

Job Status
Nr. of

Jobs (%)

Elapsed

Time/Job (hrs)

CPU

Time (%)

Completed 84.0% 1.0 56.95%

Failed 12.5% 0.7 14.75%

Cancelled 3.0% 8.0 8.96%

Timeout 0.5% 25 19.34%

the better accuracy in Haswell is due to the DRAM measurements. The results
indicate that DRAM improves the accuracy but even without DRAM, the RAPL
seems to perform better in Haswell (MAPE 3.1%) than SandyBridge (MAPE
4.0%).

When trying to estimate power consumption using only OS counters (vmstat
outputs), the results were also clearly worse than using RAPL. For SandyBridge,
the MAPE for the linear model was 11% and 6% when using a GAM model. The
same errors for Haswell were 15% and 5%. These results confirm that RAPL
readings are accurate enough to predict full-system power consumption and can
provide better estimation models when compared to the models that are based
on OS counters.

3.3 Analyzing Energy Efficiency of Data Center and Graph
Processing Platforms

We have used RAPL to analyze the energy efficiency of a data center using a
data center log and two graph processing platforms, Apache Giraph [1] and
Spark’s GraphX [50]. First we discuss the analysis results of the data center log
here. These results are presented in Publication V in more detail.
For the data center log analysis, we used the first data set obtained from Taito,
CSC which was also discussed in 3.2.3. We observed that there were considerable
variations in the power consumption between different nodes and even of a
single node at different time intervals during the observed period. This is
not surprising as the node power consumption at any point is dependent on
the type of computing jobs running on that node. In order to illustrate this
variability, we show the power consumption plots of several nodes with rather
diverse patterns in Figure 3.3. From Figure 3.3., we observe that single running
jobs also exhibit different patterns and variability in how they consume power.
While the influence of the number of jobs running on a node upon its on power
consumption is evident from the Figure, it is also clear that this dependency is
very subtle and not straightforward to express.

The CSC dataset contained the job exit status for each job, and there were
four different job exit statuses: completed, failed, cancelled and timeout. The
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(a) Node C581 (b) Node C749

(c) Node C626 (d) Node C819

Figure 3.3. Power consumption of nodes running different number of jobs
(Publication V)

interpretation of the job exit status is as follows:
Completed: Jobs which completed successfully.
Failed: Jobs which failed to complete successfully and did not produce desirable
outputs.
Cancelled: Jobs which were cancelled by their users. These are often failures,
but sometimes cancellation is done on purpose after the job has produced the
desirable results.
Timeout: Jobs which did not run to successful completion within a given time
limit. Timeouts are not necessarily failures but are done occasionally on purpose
and can produce useful outputs.

Table 3.3. presents statistics of the jobs executed on the Taito cluster. The
table contains the number of jobs which have the same status, elapsed time per
job (in hours) and total CPU Time used (user time plus system time). Table 3.3.
shows that approximately 84% of the jobs were completed, and they consumed
56.95% of the total CPU time. In contrast, there were 12.5% failed jobs and
those jobs consumed around 14.75% of the total CPU time. One more interesting
observation was that only 0.5% of the total jobs were timed out, but they con-
sumed around 19.34% of the total CPU time. Timeout jobs also had an elapsed
time of 25 hours per job, which is the maximum by a wide margin.

Taking a pessimistic assumption that all the non-completed jobs are unsuccess-
ful, it turns out that 16% of such jobs consumed around 43% of total CPU time.
This shows that the wasted resources and energy in terms of unsuccessful jobs
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can be as much as 43% in typical data centers. If these failures are identified at
a relatively early stage of a job’s lifecycle, the potential CPU time and energy
saving can be significant. It can also be a potential target for energy efficiency
in data center workload management.

Apart from the data center log analysis, we also performed a comparative
analysis of the energy efficiency of two large scale graph processing platforms:
Apache Giraph [1] and Spark’s GraphX [50]. We chose these two platforms
because of their popularity in Big Data analytics. For the experiments, we im-
plemented three well-known graph algorithms, namely PageRank [19], Strongly
Connected Component (SCC), and Single Source Shortest Path (SSSP), and then
compared their energy consumption with five different realistic graph data sets.
The datasets were directed graphs in edge list format obtained from the Stanford
Network Analysis Project (SNAP) [4]. The datasets represented significantly
different application fields, and exhibited different graph properties.

The experiments revealed an interesting insight about the energy consumption
of the platforms which are presented in Publication IV. The results indicate
that Giraph was considerably slower than GraphX for PageRank computation.
Consequently, from the perspective of energy efficiency, Giraph was also consid-
erably less efficient. On average, GraphX was 2.06 times faster and consumed
1.71 times less CPU PKG energy than Giraph. Interestingly for SSSP, Giraph
performed much better and the results were very similar to GraphX. As the data
set size increased, SSSP required more energy with GraphX. In the case of SCC,
GraphX crashed with the moderate size dataset and could not produce desirable
results. We also observed that in the case of SSSP, interestingly, both GraphX
and Giraph consumed less energy on the cit-Patents dataset when compared
to the web-Google dataset although cit-Patents is almost 4 times bigger in size
than web-Google (Publication IV includes more details on the datasets). We also
examined the graph statistics and found that although web-Google is smaller in
size, it has a greater number of triangles than cit-Patents. This indicates that
graph properties play a crucial role in processing time and energy consumption.
GraphX crashed while we performed the PageRank experiment for bigger graphs
with the default Spark memory parameters. GraphX or rather Spark not only
crashed but took considerably more time to provide information about the failure
when we compared the timing with Giraph. We had to increase the memory
to ensure that GraphX finished the computations. As discussed in [52], there
is a possibility that Spark might crash for larger data files since the memory
usage can become high quickly. We did not observe any such issues in the case
of Giraph with Hadoop. With Spark, our findings are that if the iteration count
is high and there is little available memory, Spark crashes. It should be possible,
however, to reduce the memory usage of Spark by using checkpoints. Saving
checkpoints allows Spark to reduce the memory usage while still being fault
tolerant. Nevertheless, for those workloads where GraphX was able to gener-
ate meaningful results, it was superior to Giraph in terms of energy efficiency
although with some exceptions. The reason is that GraphX takes advantage of
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Spark’s memory-based RDD. We also demonstrated that the energy consumption
characteristics of these algorithms were different. Interestingly, unlike other Big
Data applications, we found that the performance of the Graph-based algorithms
varied with the properties of the graph.

3.4 RAPL Evaluation

We have showed in the previous sections that RAPL has several merits and
showed good potential to be used as an energy metering tool in power modeling.
However, it is not clear whether RAPL also possesses weaknesses in measuring
and monitoring the energy consumption of various CPU components. With this
in mind, we performed a comprehensive evaluation and an in-depth study of
RAPL, which is presented in Publication VI. We performed these experiments
on Intel’s Sandybridge, Haswell and Skylake architecture using diversified
workloads. We also performed experiments on Amazon’s EC2. Key findings from
our study are listed below:

1. RAPL shows promising accuracy and predicts full-system power consumption
with acceptable accuracy.

2. RAPL’s performance overhead is so low as to be negligible.

3. RAPL’s PKG power readings and temperature has measurable correlation, at
least in the Haswell architecture.

4. For Skylake, RAPL updates the PP0 domain in the order of μs .

5. RAPL’s support in Amazon EC2 can be useful, but it needs more careful
consideration.

Table 3.4. RAPL Performance Overhead (Publication VI)

Application 100 Hz 200 Hz 500 Hz 1000 Hz 1100 Hz

Idq-bench-float-array-l1 0.07% 0.15% 0.35% 0.70% 0.75%

Idq-bench-float-array-l2 0.15% 0.23% 0.42% 0.78% 0.86%

Idq-bench-float-array-l3 0.15% 0.17% 0.40% 0.75% 0.84%

STREAM-NTIMES-2000 0.46% 0.35% 0.89% 1.20% 0.70%

Idq-bench-int-algo 0.07% 0.14% 0.34% 0.66% 0.70%

We present here a brief discussion of the results presented in Publication VI.
Table 3.4 presents a subset of the results from the performance overhead experi-
ments. The applications used are the same microbenchmarks we developed and
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used in Publication III. As the results indicate, for Idq-bench-float-array-l1 the
highest performance overhead is 0.75% at 1100 Hz over a normal run when no
RAPL measurement is performed. The results follow the same trend for other
applications. From the results presented in Table 3.4, it is clear that even for
a sampling rate of 1100Hz, the performance overhead will be less than 2% in
most cases. Since the overhead is small, it is possible to take advantage of high
sampling rates without disturbing the system too much.
We also showed that with RAPL it is possible to reveal the correlation between
the CPU PKG temperature and PKG power for both Haswell and Skylake archi-
tectures. Our experiments showed that in the case of Haswell, the PKG power
grew by approximately 10-12% between 37°C to 74°C. In the case of Skylake,
the PKG power grew by approximately 8-10% between 23°C to 32°C. We can
see that the PKG power drifted 5-10 watts for Haswell, while the Skylake PKG
power readings remained quite stable in comparison. The correlation coefficient
between Haswell’s PKG reading and temperature was 0.93, whereas for Sky-
lake it was 0.34. The high correlation coefficient for Haswell suggests that in
case of Haswell, temperature can have a measurable impact on the PKG power
consumption and, thus, it is important to take the temperature of the system
into account while measuring power using RAPL. Skylake have dealt with this
phenomenon to some extent, and there is a smaller correlation between the PKG
power and temperature in the case of Skylake.
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Figure 3.4. PP0 Sampling Rate. (Publication VI)

We also showed that Intel has improved the temporal resolution of PP0 updates
in Skylake in comparison to Haswell and previous architectures. PP0 in Skylake
updates approximately 20 times in between a single update for other domains
(PKG, PP1 and DRAM). Figure 3.4 shows the time gap between two consecutive
PP0 updates in the case of Haswell and Skylake for about 10,000 updates. This
figure shows that for Haswell most of the PP0 updates happen at a time interval
of nearly 1 ms or 1000 μs, whereas for Skylake the bulk of the updates happen
between 50 and 70 μs with a few outliers. This new improvement for Skylake
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allows a more granular temporal resolution and, as a result, it improves the
possibility to determine the energy consumption of short code paths.
In contrast to the above mentioned advantages, we showed that RAPL also
possesses a few limitations, namely poor driver support, register overflows, non-
atomic register updates, unpredictable timings, lack of support for individual
core power measurements, and fixed sampling rate and energy units. We also
pinpointed several workarounds and suggestions to overcome these issues in
Publication VI. We performed similar experiments in Amazon EC2 with five
different EC2 instances. Our observations concerning Amazon EC2 were quite
similar to the observations presented in this section. We observed that the
EC2 instances support RAPL although we could not verify the relation between
PKG power and PKG temperature since Amazon EC2 does not allow monitoring
PKG temperature readings. We also observed that the timing gaps between
consecutive RAPL updates were very sporadic and did not show a definite
pattern, which should ideally be 1 ms for Haswell as we observed in the case
of standalone systems. The results also revealed that there is a difference
in RAPL implementation between different Intel architectures. We found a
measurable difference in the polling delay between standalone workstations
and Amazon EC2 instances. The hypervisor in EC2 instances traps the MSR
reads which can add to the polling delay. The CPU in EC2 also runs at a lower
clock rate, which might also add to the delay. Nevertheless, it is hard to pinpoint
whether the timing gaps are produced by the hardware or interference from
the hypervisor. Further investigation is required before making such claims.
Nevertheless, RAPL’s use case in Amazon EC2 is quite limited, and we suggest
a few straightforward enhancements that could make RAPL more usable in a
virtual environment:

• Reducing the delay of reading RAPL MSRs through hypervisors.

• Adding per core energy accounting instead of per PKG. This would also make
the RAPL implementation more secure since it would not be possible to see the
activities of other instances sharing the same PKG through power consumption
patterns.

• Adding timestamps to RAPL updates to allow per job or per process energy
profiling.

In brief, we have presented our findings about Intel RAPL’s accuracy, plug power
estimation capability, relation with temperature, sampling rate, performance
overhead and some other important aspects that we need to quantify about
RAPL, not only through our own experiments but also by undertaking a thorough
review of the literature. Our study showed that Intel RAPL can provide accurate
enough results for the power consumption of a CPU or attached DRAMs without
manually instrumenting the system. The sampling rate is high enough and the
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performance overhead for reading RAPL counters at a higher rate is low enough
for most of the general cases. Nevertheless, there are some aspects of RAPL
which might not make it a suitable tool for cases where we need to determine
the power consumption of short code paths [57], or cases where we need to know
the exact timestamps attached to each RAPL update. We have meticulously
discussed all of these aspects to highlight the advantages as well as weaker
aspects of RAPL.

3.5 Open Questions

In this subsection, we discuss the future works that can be based on the findings
and results of this thesis.
First, apart from measuring the full-system power consumption, it is also impor-
tant to profile individual applications to determine the power hungry modules
and phases in such a way that the software engineers can design energy efficient
applications. The profiling technique presented in Publication I can be expanded
to offer a full-fledged energy profiler which has better strategies for distributing
the measured energy over multiple threads of the application being profiled and
other processes. Publication I was a first attempt to utilize RAPL in energy
profiling. RAPL has evolved since then with improved accuracy and granularity
and incorporates new domain measurements such as PSys. Such additions
will improve the profiling technique proposed in Publication I. We also sug-
gest emphasizing the energy profiling of software applications since the power
analysis of hardware devices has been widely studied in contrast to software
applications. Additionally, one very important inclusion in this methodology
would be to account for per job energy spending. Such an understanding would
be very beneficial, specifically for cloud service providers since it would also
allow them to bill customers for energy spent per hour instead of core per hour.
Second, the power models proposed in Publication II, Publication V and Publica-
tion VI covered typical scientific applications, which are mostly computationally
intensive or memory intensive workloads as well as other similar benchmarks or
applications. These workloads typically simulate scientific workloads. Although,
the models do not cover all kinds of data center applications, these models can
be extended to calibrate the models for such applications. Also, we only focused
on Intel processors supporting the RAPL feature even though our method itself
is not limited to RAPL, because it only needs the power consumption data of
different components of the computing system. AMD and ARM processors also
have similar alternatives for RAPL. Prior works suggest the AMD processor
can report "Current Power In Watts" using MSRs like RAPL [57], and ARM
has a cross platform chip monitor integrated with recent versions of processors
[9]. We also suggest enhancing the power models to include GPUs since the
GPUs nowadays appear to be a viable alternative for CPUs in providing energy
efficient processing [35].
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Third, with new processing architectures like ARM or ATOM entering the
HPC markets, x86-64 architectures are facing increased pressure. This also
allows HPC service providers to utilize the heterogeneity on offer towards en-
ergy efficient computing. For such scenarios, power breakdowns of processing
components is crucial in order to realize the power expenditure of different
components. The power modeling presented in Publication III can be extended
to obtain power models of processing components of architectures like ARM or
ATOM, and also to compare the architectures based on their energy efficiency.
Such an understanding would be very beneficial in providing energy efficiency,
especially in a heterogeneous computing scenario.
Fourth, the methods presented for analyzing the power consumption of data
center logs and Big-Data based frameworks presented in Publication IV and
Publication V can be used as the input for providing energy efficient scheduling
of workloads in HPC systems. The power optimization of computing systems
can be achieved by utilizing both the energy consumption characteristics of the
software and the heterogeneity offered by the hardware. The analysis techniques
showed in Publication IV and Publication V can also be extended to produce job
specific power consumption models and identify power consumption anomalies.
Such models can also be used as an input for energy optimizations and energy
efficient workload consolidation.
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4. Conclusions

Energy efficiency has been a well researched topic in mobile computing scenarios
but until recently energy was considered to be an abundant resource in HPC.
Now, however, energy efficiency in HPC has started to gain much more attention
both in industry and academia, not only because of the monetary cost but also
because of the environmental impact. There has been a noticeable effort invested
by both industry and academia in order to design energy efficient hardware,
tools, techniques as well as to set out the software principles to aid for energy
efficiency in computing. These efforts have addressed some issues already, but
they do not answer all the questions posed by the emerging paradigms like cloud
computing and Big-Data processing.
In this thesis, we have focused on understanding the energy consumption be-
havior of server-based computing systems with a special focus on the energy
consumption of the processing element, the CPU and the memory. For that, we
have extensively employed Intel’s RAPL as an energy measurement tool. Using
RAPL, we have shown that it is possible to measure the energy consumption
of applications with promising accuracy and high granularity without having
to use expensive instrumentation with the system. We have shown that with
RAPL, it is possible to identify the power consumed by unsuccessful jobs which
can be a significant cost and identifying such failures in the early stages of a
job’s life-cycle can significantly reduce the energy consumption of the system.
We have shown different power modeling techniques using RAPL in different
scenarios and their applicability in different contexts. We not only advocated
for RAPL as an energy measurement tool but we also evaluated RAPL and
pinpointed several concerns which might hinder its usage. For such cases, we
have suggested possible workarounds and highlighted possible enhancements
which can make RAPL more useful for the power analysis of the computing
systems.
We have also shown how to analyze data center power logs and Big-Data pro-
cessing frameworks for energy efficiency. The contributions of this thesis not
only focus on energy measurements and modeling but also pinpoint methods
to identify potential energy savings and performance improvements towards
the development of energy efficient scheduling and workload management. We
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believe that the models, tools and techniques presented in this thesis will provide
a meaningful insight into the energy efficiency of HPC systems and the future
directions that will further help to enhance these methods for energy efficient
computing.
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