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Abstract

Interacting systems are prevalent in nature, from
dynamical systems in physics to complex societal
dynamics. The interplay of components can give
rise to complex behavior, which can often be ex-
plained using a simple model of the system’s con-
stituent parts. In this work, we introduce the neu-
ral relational inference (NRI) model: an unsuper-
vised model that learns to infer interactions while
simultaneously learning the dynamics purely from
observational data. Our model takes the form of
a variational auto-encoder, in which the latent
code represents the underlying interaction graph
and the reconstruction is based on graph neural
networks. In experiments on simulated physical
systems, we show that our NRI model can ac-
curately recover ground-truth interactions in an
unsupervised manner. We further demonstrate
that we can find an interpretable structure and pre-
dict complex dynamics in real motion capture and
sports tracking data.

1. Introduction
A wide range of dynamical systems in physics, biology,
sports, and other areas can be seen as groups of interacting
components, giving rise to complex dynamics at the level of
individual constituents and in the system as a whole. Mod-
eling these type of dynamics is challenging: often, we only
have access to individual trajectories, without knowledge of
the underlying interactions or dynamical model.

As a motivating example, let us take the movement of bas-
ketball players on the court. It is clear that the dynamics
of a single basketball player are influenced by the other
players, and observing these dynamics as a human, we are
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Observed dynamics Interaction graph

Figure 1. Physical simulation of 2D particles coupled by invisible
springs (left) according to a latent interaction graph (right). In this
example, solid lines between two particle nodes denote connections
via springs whereas dashed lines denote the absence of a coupling.
In general, multiple, directed edge types – each with a different
associated relation – are possible.

able to reason about the different types of interactions that
might arise, e.g. defending a player or setting a screen for a
teammate. It might be feasible, though tedious, to manually
annotate certain interactions given a task of interest. It is
more promising to learn the underlying interactions, perhaps
shared across many tasks, in an unsupervised fashion.

Recently there has been a considerable amount of work
on learning the dynamical model of interacting systems
using implicit interaction models (Sukhbaatar et al., 2016;
Guttenberg et al., 2016; Santoro et al., 2017; Watters et al.,
2017; Hoshen, 2017; van Steenkiste et al., 2018). These
models can be seen as graph neural networks (GNNs) that
send messages over the fully-connected graph, where the
interactions are modeled implicitly by the message passing
function (Sukhbaatar et al., 2016; Guttenberg et al., 2016;
Santoro et al., 2017; Watters et al., 2017) or with the help
of an attention mechanism (Hoshen, 2017; van Steenkiste
et al., 2018).

In this work, we address the problem of inferring an explicit
interaction structure while simultaneously learning the dy-
namical model of the interacting system in an unsupervised
way. Our neural relational inference (NRI) model learns the
dynamics with a GNN over a discrete latent graph, and we
perform inference over these latent variables. The inferred
edge types correspond to a clustering of the interactions.
Using a probabilistic model allows us to incorporate prior
beliefs about the graph structure, such as sparsity, in a prin-
cipled manner.
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In a range of experiments on physical simulations, we show
that our NRI model possesses a favorable inductive bias that
allows it to discover ground-truth physical interactions with
high accuracy in a completely unsupervised way. We further
show on real motion capture and NBA basketball data that
our model can learn a very small number of edge types that
enable it to accurately predict the dynamics many time steps
into the future.

2. Background: Graph Neural Networks
We start by giving a brief introduction to a recent class of
neural networks that operate directly on graph-structured
data by passing local messages (Scarselli et al., 2009; Li
et al., 2016; Gilmer et al., 2017). We refer to these models as
graph neural networks (GNN). Variants of GNNs have been
shown to be highly effective at relational reasoning tasks
(Santoro et al., 2017), modeling interacting or multi-agent
systems (Sukhbaatar et al., 2016; Battaglia et al., 2016),
classification of graphs (Bruna et al., 2014; Duvenaud et al.,
2015; Dai et al., 2016; Niepert et al., 2016; Defferrard et al.,
2016; Kearnes et al., 2016) and classification of nodes in
large graphs (Kipf & Welling, 2017; Hamilton et al., 2017).
The expressive power of GNNs has also been studied theo-
retically in (Zaheer et al., 2017; Herzig et al., 2018).

Given a graph G = (V, E) with vertices v ∈ V and edges
e = (v, v′) ∈ E 1, we define a single node-to-node message
passing operation in a GNN as follows, similar to Gilmer
et al. (2017):

v→e : hl(i,j) = f le([h
l
i,h

l
j ,x(i,j)]) (1)

e→v : hl+1
j = f lv([

∑
i∈Nj h

l
(i,j),xj ]) (2)

where hli is the embedding of node vi in layer l, hl(i,j) is an
embedding of the edge e(i,j), and xi and x(i,j) summarize
initial (or auxiliary) node and edge features, respectively
(e.g. node input and edge type). Nj denotes the set of indices
of neighbor nodes connected by an incoming edge and [·, ·]
denotes concatenation of vectors. The functions fv and
fe are node- and edge-specific neural networks (e.g. small
MLPs) respectively (see Figure 2). Eqs. (1)–(2) allow for
the composition of models that map from edge to node
representations or vice-versa via multiple rounds of message
passing.

In the original GNN formulation from Scarselli et al. (2009)
the node embedding hl(i,j) depends only on hli, the embed-
ding of the sending node, and the edge type, but not on hlj ,
the embedding of the receiving node. This is of course a spe-
cial case of this formulation, and more recent works such as
interaction networks (Battaglia et al., 2016) or message pass-
ing neural networks (Gilmer et al., 2017) are in line with our

1Undirected graphs can be modeled by explicitly assigning two
directed edges in opposite direction for each undirected edge.
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Figure 2. Node-to-edge (v→e) and edge-to-node (e→v) opera-
tions for moving between node and edge representations in a GNN.
v→e represents concatenation of node embeddings connected by
an edge, whereas e→v denotes the aggregation of edge embed-
dings from all incoming edges. In our notation in Eqs. (1)–(2),
every such operation is followed by a small neural network (e.g. a
2-layer MLP), here denoted by a black arrow. For clarity, we high-
light which node embeddings are combined to form a specific edge
embedding (v→e) and which edge embeddings are aggregated to
a specific node embedding (e→v).

more general formulation. We further note that some recent
works factor f le(·) into a product of two separate functions,
one of which acts as a gating or attention mechanism (Monti
et al., 2017; Duan et al., 2017; Hoshen, 2017; Veličković
et al., 2018; Garcia & Bruna, 2018; van Steenkiste et al.,
2018) which in some cases can have computational benefits
or introduce favorable inductive biases.

3. Neural Relational Inference Model
Our NRI model consists of two parts trained jointly: An
encoder that predicts the interactions given the trajectories,
and a decoder that learns the dynamical model given the
interaction graph.

More formally, our input consists of trajectories of N
objects. We denote by xti the feature vector of object
vi at time t, e.g. location and velocity. We denote by
xt = {xt1, ...,xtN} the set of features of all N objects at
time t, and we denote by xi = (x1

i , ...,x
T
i ) the trajectory of

object i, where T is the total number of time steps. Lastly,
we mark the whole trajectories by x = (x1, ...,xT ). We
assume that the dynamics can be modeled by a GNN given
an unknown graph z where zij represents the discrete edge
type between objects vi and vj . The task is to simultane-
ously learn to predict the edge types and learn the dynamical
model in an unsupervised way.

We formalize our model as a variational autoencoder (VAE)
(Kingma & Welling, 2014; Rezende et al., 2014) that maxi-
mizes the ELBO:

L = Eqφ(z|x)[log pθ(x|z)]−KL[qφ(z|x)||pθ(z)] (3)
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Figure 3. The NRI model consists of two jointly trained parts: An encoder that predicts a probability distribution qφ(z|x) over the latent
interactions given input trajectories; and a decoder that generates trajectory predictions conditioned on both the latent code of the encoder
and the previous time step of the trajectory. The encoder takes the form of a GNN with multiple rounds of node-to-edge (v→e) and
edge-to-node (e→v) message passing, whereas the decoder runs multiple GNNs in parallel, one for each edge type supplied by the latent
code of the encoder qφ(z|x).

The encoder qφ(z|x) returns a factorized distribution of
zij , where zij is a discrete categorical variable representing
the edge type between object vi and vj . We use a one-hot
representation of the K interaction types for zij .

The decoder

pθ(x|z) =
∏T
t=1 pθ(x

t+1|xt, ...,x1, z) (4)

models pθ(xt+1|xt, ...,x1, z) with a GNN given the latent
graph structure z.

The prior pθ(z) =
∏
i 6=j pθ(zij) is a factorized uniform dis-

tribution over edges types. If one edge type is “hard coded”
to represent “non-edge” (no messages being passed along
this edge type), we can use an alternative prior with higher
probability on the “non-edge” label. This will encourage
sparser graphs.

There are some notable differences between our model and
the original formulation of the VAE (Kingma & Welling,
2014). First, in order to avoid the common issue in VAEs of
the decoder ignoring the latent code z (Chen et al., 2017),
we train the decoder to predict multiple time steps and not a
single step as the VAE formulation requires. This is neces-
sary since interactions often only have a small effect in the
time scale of a single time step. Second, the latent distribu-
tion is discrete, so we use a continuous relaxation in order
to use the reparameterization trick. Lastly, we note that we
do not learn the probability p(x1) (i.e. for t = 1) as we are
interested in the dynamics and interactions, and this does
not have any effect on either (but would be easy to include
if there was a need).

The overall model is schematically depicted in Figure 3. In
the following, we describe the encoder and decoder compo-
nents of the model in detail.

3.1. Encoder

At a high level, the goal of the encoder is to infer pair-
wise interaction types zij given observed trajectories x =
(x1, ...,xT ). Since we do not know the underlying graph,
we can use a GNN on the fully-connected graph to predict
the latent graph structure.

More formally, we model the encoder as qφ(zij |x) =
softmax(fenc,φ(x)ij,1:K), where fenc,φ(x) is a GNN act-
ing on the fully-connected graph (without self-loops). Given
input trajectories x1, ...,xK our encoder computes the fol-
lowing message passing operations:

h1
j = femb(xj) (5)

v→e : h1
(i,j) = f1e ([h1

i ,h
1
j ]) (6)

e→v : h2
j = f1v (

∑
i 6=j h

1
(i,j)) (7)

v→e : h2
(i,j) = f2e ([h2

i ,h
2
j ]) (8)

Finally, we model the edge type posterior as qφ(zij |x) =
softmax(h2

(i,j)) where φ summarizes the parameters of the
neural networks in Eqs. (5)–(8). The use of multiple passes,
two in the model presented here, allows the model to “dis-
entangle” multiple interactions while still using only binary
terms. In a single pass, Eqs. (5)–(6), the embedding h1

(i,j)

only depends on xi and xj ignoring interactions with other
nodes, while h2

j uses information from the whole graph.

The functions f(...) are neural networks that map between
the respective representations. In our experiments we used
either fully-connected networks (MLPs) or 1D convolu-
tional networks (CNNs) with attentive pooling similar to
(Lin et al., 2017) for the f(...) functions. See supplementary
material for further details.

While this model falls into the general framework presented
in Sec. 3, there is a conceptual difference in how hl(i,j)
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are interpreted. Unlike in a typical GNN, the messages
hl(i,j) are no longer considered just a transient part of the
computation, but an integral part of the model that represents
the edge embedding used to perform edge classification.

3.2. Sampling

It is straightforward to sample from qφ(zij |x), however
we cannot use the reparametrization trick to backpropagate
though the sampling as our latent variables are discrete.
A recently popular approach to handle this difficulty is to
sample from a continuous approximation of the discrete
distribution (Maddison et al., 2017; Jang et al., 2017) and
use the repramatrization trick to get (biased) gradients from
this approximation. We used the concrete distribution (Mad-
dison et al., 2017) where samples are drawn as:

zij = softmax((h2
(i,j) + g)/τ) (9)

where g ∈ RK is a vector of i.i.d. samples drawn from a
Gumbel(0, 1) distribution and τ (softmax temperature) is
a parameter that controls the “smoothness” of the samples.
This distribution converges to one-hot samples from our
categorical distribution when τ → 0.

3.3. Decoder

The task of the decoder is to predict the future continuation
of the interacting system’s dynamics pθ(xt+1|xt, ...,x1, z).
Since the decoder is conditioned on the graph z we can in
general use any GNN algorithm as our decoder.

For physics simulations the dynamics is Markovian
pθ(x

t+1|xt, ...,x1, z) = pθ(x
t+1|xt, z), if the state is lo-

cation and velocity and z is the ground-truth graph. For this
reason we use a GNN similar to interaction networks; unlike
interaction networks we have a separate neural network for
each edge type. More formally:

v→e : h̃t(i,j) =
∑
k

zij,kf̃
k
e ([xti,x

t
j ]) (10)

e→v : µt+1
j = xtj + f̃v(

∑
i 6=j h̃

t
(i,j)) (11)

p(xt+1
j |x

t, z) = N (µt+1
j , σ2I) (12)

Note that zij,k denotes the k-th element of the vector zij
and σ2 is a fixed variance. When zij,k is a discrete one-hot
sample the messages h̃t(i,j) are f̃ke ([xti,x

t
j ]) for the selected

edge type k, and for the continuous relaxation we get a
weighted sum. Also note that since in Eq. 11 we add the
present state xtj our model only learns the change in state
∆xtj .

3.4. Avoiding degenerate decoders

If we look at the ELBO, Eq. 3, the reconstruction loss term
has the form

∑T
t=1 log[p(xt|xt−1, z)] which involves only

single step predictions. One issue with optimizing this ob-
jective is that the interactions can have a small effect on
short-term dynamics. For example, in physics simulations
a fixed velocity assumption can be a good approximation
for a short time period. This leads to a sub-optimal decoder
that ignores the latent edges completely and achieves only a
marginally worse reconstruction loss.

We address this issue in two ways: First, we predict multiple
steps into the future, where a “degenerate” decoder (which
ignores the latent edges) would perform much worse. Sec-
ond, instead of having one neural network that computes
the messages given [xti,x

t
j , zij ], as was done in (Battaglia

et al., 2016), we have a separate MLP for each edge type.
This makes the dependence on the edge type more explicit
and harder to be ignored by the model.

Predicting multiple steps is implemented by replacing the
correct input xt, with the predicted mean µt for M steps
(we used M = 10 in our experiments), then feed in the
correct previous step and reiterate. More formally, if we
denote our decoder as µt+1

j = fdec(x
t
j) then we have:

µ2
j = fdec(x

1
j )

µt+1
j = fdec(µ

t
j) t = 2, . . . ,M

µM+2
j = fdec(x

M+1
j )

µt+1
j = fdec(µ

t
j) t = M + 2, . . . , 2M

· · ·

We are backpropagating through this whole process, and
since the errors accumulate for M steps the degenerate
decoder is now highly suboptimal.

3.5. Recurrent decoder

In many applications the Markovian assumption used in
Sec. 3.3 does not hold. To handle such applications we use
a recurrent decoder that can model pθ(xt+1|xt, ...,x1, z).
Our recurrent decoder adds a GRU (Cho et al., 2014) unit
to the GNN message passing operation. More formally:

v→e : h̃t(i,j) =
∑
k

zij,kf̃
k
e ([h̃ti, h̃

t
j ]) (13)

e→v : MSGt
j =

∑
i 6=j h̃

t
(i,j) (14)

h̃t+1
j = GRU([MSGt

j ,x
t
j ], h̃

t
j) (15)

µt+1
j = xtj + fout(h̃

t+1
j ) (16)

p(xt+1|xt, z) = N (µt+1, σ2I) (17)

The input to the message passing operation is the recurrent
hidden state at the previous time step. fout denotes an output
transformation, modeled by a small MLP. For each node
vj the input to the GRU update is the concatenation of the
aggregated messages MSGt+1

j , the current input xt+1
j , and

the previous hidden state h̃tj .
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If we wish to predict multiple time steps in the recurrent
setting, the method suggested in Sec. 3.4 will be problematic.
Feeding in the predicted (potentially incorrect) path and
then periodically jumping back to the true path will generate
artifacts in the learned trajectories. In order to avoid this
issue we provide the correct input xtj in the first (T −M)
steps, and only utilize our predicted mean µtj as input at the
last M time steps.

3.6. Training

Now that we have described all the elements, the train-
ing goes as follows: Given training example x we first
run the encoder and compute qφ(zij |x), then we sample
zij from the concrete reparameterizable approximation of
qφ(zij |x). We then run the decoder to compute µ2, ...,µT .
The ELBO objective, Eq. 3, has two terms: the recon-
struction error Eqφ(z|x)[log pθ(x|z)] and KL divergence
KL[qφ(z|x)||pθ(z)]. The reconstruction error is estimated
by:

−
∑
j

T∑
t=2

||xtj − µtj ||2

2σ2
+ const (18)

while the KL term for a uniform prior is just the sum of
entropies (plus a constant):∑

i 6=j

H(qφ(zij |x)) + const. (19)

As we use a reparameterizable approximation, we can com-
pute gradients by backpropagation and optimize.

4. Related Work
Several recent works have studied the problem of learning
the dynamics of a physical system from simulated trajecto-
ries (Battaglia et al., 2016; Guttenberg et al., 2016; Chang
et al., 2017) and from generated video data (Watters et al.,
2017; van Steenkiste et al., 2018) with a graph neural net-
work. Unlike our work they either assume a known graph
structure or infer interactions implicitly.

Recent related works on graph-based methods for human
motion prediction include (Alahi et al., 2016) where the
graph is not learned but is based on proximity and (Le et al.,
2017) tries to cluster agents into roles.

A number of recent works (Monti et al., 2017; Duan et al.,
2017; Hoshen, 2017; Veličković et al., 2018; Garcia &
Bruna, 2018; van Steenkiste et al., 2018) parameterize mes-
sages in GNNs with a soft attention mechanism (Luong
et al., 2015; Bahdanau et al., 2015). This equips these mod-
els with the ability to focus on specific interactions with
neighbors when aggregating messages. Our work is dif-
ferent from this line of research, as we explicitly perform
inference over the latent graph structure. This allows for the

Springs (2D) Kuramoto (1D)Charged (2D)

Figure 4. Examples of trajectories used in our experiments from
simulations of particles connected by springs (left), charged parti-
cles (middle), and phase-coupled oscillators (right).

incorporation of prior beliefs (such as sparsity) and for an
interpretable discrete structure with multiple relation types.

The problem of inferring interactions or latent graph struc-
ture has been investigated in other settings in different
fields. For example, in causal reasoning Granger causality
(Granger, 1969) infers causal relations. Another example
from computational neuroscience is (Linderman et al., 2016;
Linderman & Adams, 2014) where they infer interactions
between neural spike trains.

5. Experiments
Our encoder implementation uses fully-connected networks
(MLPs) or 1D CNNs with attentive pooling as our message
passing function. For our decoder we used fully-connected
networks or alternatively a recurrent decoder. Optimiza-
tion was performed using the Adam algorithm (Kingma &
Ba, 2015). We provide full implementation details in the
supplementary material. Our implementation uses PyTorch
(Paszke et al., 2017) and is available online2.

5.1. Physics simulations

We experimented with three simulated systems: particles
connected by springs, charged particles and phase-coupled
oscillators (Kuramoto model) (Kuramoto, 1975). These
settings allow us to attempt to learn the dynamics and in-
teractions when the interactions are known. These systems,
controlled by simple rules, can exhibit complex dynamics.
For the springs and Kuramoto experiments the objects do
or do not interact with equal probability. For the charged
particles experiment they attract or repel with equal prob-
ability. Example trajectories can be seen in Fig. 4. We
generate 50k training examples, and 10k validation and test
examples for all tasks. Further details on the data generation
and implementation are in the supplementary material.

We note that the simulations are differentiable and so we can
use it as a ground-truth decoder to train the encoder. The
charged particles simulation, however, suffers from instabil-

2https://github.com/ethanfetaya/nri

https://github.com/ethanfetaya/nri
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Charged (2D)Springs (2D) Kuramoto (1D)

Prediction TruthPrediction Truth Prediction Truth

Figure 5. Trajectory predictions from a trained NRI model (unsupervised). Semi-transparent paths denote the first 49 time steps of
ground-truth input to the model, from which the interaction graph is estimated. Solid paths denote self-conditioned model predictions.

Table 1. Accuracy (in %) of unsupervised interaction recovery.

Model Springs Charged Kuramoto

5 objects
Corr. (path) 52.4±0.0 55.8±0.0 62.8±0.0

Corr. (LSTM) 52.7±0.9 54.2±2.0 54.4±0.5

NRI (sim.) 99.8±0.0 59.6±0.8 –
NRI (learned) 99.9±0.0 82.1±0.6 96.0±0.1

Supervised 99.9±0.0 95.0±0.3 99.7±0.0

10 objects
Corr. (path) 50.4±0.0 51.4±0.0 59.3±0.0

Corr. (LSTM) 54.9±1.0 52.7±0.2 56.2±0.7

NRI (sim.) 98.2±0.0 53.7±0.8 –
NRI (learned) 98.4±0.0 70.8±0.4 75.7±0.3

Supervised 98.8±0.0 94.6±0.2 97.1±0.1

ity which led to some performance issues when calculating
gradients; see supplementary material for further details.
We used an external code base (Laszuk, 2017) for stable
integration of the Kuramoto ODE and therefore do not have
access to gradient information in this particular simulation.

Results We ran our NRI model on all three simulated
physical systems and compared our performance, both in
future state prediction and in accuracy of estimating the
edge type in an unsupervised manner.

For edge prediction, we compare to the “gold standard”
i.e. training our encoder in a supervised way given the
ground-truth labels. We also compare to the following base-
lines: Our NRI model with the ground-truth simulation
decoder, NRI (sim.), and two correlation based baselines,

Corr. (path) and Corr. (LSTM). Corr. (path) estimates the
interaction graph by thresholding the matrix of correlations
between trajectory feature vectors. Corr. (LSTM) trains
an LSTM (Hochreiter & Schmidhuber, 1997) with shared
parameters to model each trajectory individually and calcu-
lates correlations between the final hidden states to arrive at
an interaction matrix after thresholding. We provide further
details on these baselines in the supplementary material.

Results for the unsupervised interaction recovery task are
summarized in Table 1 (average over 5 runs and standard
error). As can be seen, the unsupervised NRI model, NRI
(learned), greatly surpasses the baselines and recovers the
ground-truth interaction graph with high accuracy on most
tasks. For the springs model our unsupervised method is
comparable to the supervised “gold standard” benchmark.
We note that our supervised baseline is similar to the work
by (Santoro et al., 2017), with the difference that we perform
multiple rounds of message passing in the graph. Additional
results on experiments with more than two edge types and
non-interacting particles are described in the supplementary
material.

For future state prediction we compare to the static baseline,
i.e. xt+1 = xt, two LSTM baselines, and a full graph
baseline. One LSTM baseline, marked as “single”, runs a
separate LSTM (with shared weights) for each object. The
second, marked as “joint” concatenates all state vectors and
feeds it into one LSTM that is trained to predict all future
states simultaneously. Note that the latter will only be able
to operate on a fixed number of objects (in contrast to the
other models).

In the full graph baseline, we use our message passing
decoder on the fully-connected graph without edge types,
i.e. without inferring edges. This is similar to the model
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Table 2. Mean squared error (MSE) in predicting future states for simulations with 5 interacting objects.

Springs Charged Kuramoto

Prediction steps 1 10 20 1 10 20 1 10 20

Static 7.93e-5 7.59e-3 2.82e-2 5.09e-3 2.26e-2 5.42e-2 5.75e-2 3.79e-1 3.39e-1
LSTM (single) 2.27e-6 4.69e-4 4.90e-3 2.71e-3 7.05e-3 1.65e-2 7.81e-4 3.80e-2 8.08e-2
LSTM (joint) 4.13e-8 2.19e-5 7.02e-4 1.68e-3 6.45e-3 1.49e-2 3.44e-4 1.29e-2 4.74e-2
NRI (full graph) 1.66e-5 1.64e-3 6.31e-3 1.09e-3 3.78e-3 9.24e-3 2.15e-2 5.19e-2 8.96e-2
NRI (learned) 3.12e-8 3.29e-6 2.13e-5 1.05e-3 3.21e-3 7.06e-3 1.40e-2 2.01e-2 3.26e-2

NRI (true graph) 1.69e-11 1.32e-9 7.06e-6 1.04e-3 3.03e-3 5.71e-3 1.35e-2 1.54e-2 2.19e-2

Figure 6. Test MSE comparison for motion capture (walking) data
(left) and sports tracking (SportVU) data (right).

used in (Watters et al., 2017). We also compare to the “gold
standard” model, denoted as NRI (true graph), which is
training only a decoder using the ground-truth graph as
input. The latter baseline is comparable to previous works
such as interaction networks (Battaglia et al., 2016).

In order to have a fair comparison, we generate longer test
trajectories and only evaluate on the last part unseen by the
encoder. Specifically, we run the encoder on the first 49 time
steps (same as in training and validation), then predict with
our decoder the following 20 unseen time steps. For the
LSTM baselines, we first have a “burn-in” phase where we
feed the LSTM the first 49 time steps, and then predict the
next 20 time steps. This way both algorithms have access
to the first 49 steps when predicting the next 20 steps. We
show mean squared error (MSE) results in Table 2, and
note that our results are better than using LSTM for long
term prediction. Example trajectories predicted by our NRI
(learned) model for up to 50 time steps are shown in Fig. 5.

For the Kuramoto model, we observe that the LSTM base-
lines excel at smoothly continuing the shape of the wave-
form for short time frames, but fail to model the long-term
dynamics of the interacting system. We provide further
qualitative analysis for these results in the supplementary
material.

It is interesting to note that the charged particles experiment
achieves an MSE score which is on par with the NRI model

given the true graph, while only predicting 82.6% of the
edges accurately. This is explained by the fact that far away
particles have weak interactions, which have only small
effects on future prediction. An example can be seen in Fig.
5 in the top row where the blue particle is repelled instead
of being attracted.

5.2. Motion capture data

The CMU Motion Capture Database (CMU, 2003) is a large
collection of motion capture recordings for various tasks
(such as walking, running, and dancing) performed by hu-
man subjects. We here focus on recorded walking motion
data of a single subject (subject #35). The data is in the form
of 31 3D trajectories, each tracking a single joint. We split
the different walking trials into non-overlapping training (11
trials), validation (4 trials) and test sets (7 trials). We provide
both position and velocity data. See supplementary material
for further details. We train our NRI model with an MLP
encoder and RNN decoder on this data using 2 or 4 edge
types where one edge type is “hard-coded” as non-edge,
i.e. messages are only passed on the other edge types. We
found that experiments with 2 and 4 edge types give almost
identical results, with two edge types being comparable in
capacity to the fully connected graph baseline while four
edge types (with sparsity prior) are more interpretable and
allow for easier visualization.

Dynamic graph re-evaluation We find that the learned
graph depends on the particular phase of the motion (Fig. 7),
which indicates that the ideal underlying graph is dynamic.
To account for this, we dynamically re-evaluate the NRI
encoder for every time step during testing, effectively result-
ing in a dynamically changing latent graph that the decoder
can utilize for more accurate predictions.

Results The qualitative results for our method and the
same baselines used in Sec. 5.1 can be seen in Fig. 6. As one
can see, we outperform the fully-connected graph setting
in long-term predictions, and both models outperform the
LSTM baselines. Dynamic graph re-evaluation significantly
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(a) Right hand focus (b) Left hand focus

Figure 7. Learned latent graphs on motion capture data (4 edge
types)4. Skeleton shown for reference. Red arrowheads denote
directionality of a learned edge. The edge type shown favors a
specific hand depending on the state of the movement and gathers
information mostly from other extremities.

improves predictive performance for this dataset compared
to a static baseline. One interesting observation is that the
skeleton graph is quite suboptimal, which is surprising as
the skeleton is the “natural” graph. When examining the
edges found by our model (trained with 4 edge types and a
sparsity prior) we see an edge type that mostly connects a
hand to other extremities, especially the opposite hand, as
seen in Fig. 7. This can seem counter-intuitive as one might
assume that the important connections are local, however
we note that some leading approaches for modeling motion
capture data (Jain et al., 2016) do indeed include hand to
hand interactions.

5.3. Pick and Roll NBA data

The National Basketball Association (NBA) uses the
SportVU tracking system to collect player tracking data,
where each frame contains the location of all ten players
and the ball. Similar to our previous experiments, we test
our model on the task of future trajectory prediction. Since
the interactions between players are dynamic, and our cur-
rent formulation assumes fixed interactions during training,
we focus on the short Pick and Roll (PnR) instances of the
games. PnR is one of the most common offensive tactics in
the NBA where an offensive player sets a screen for the ball
handler, attempting to create separation between the ball
handler and his matchup.

We extracted 12k segments from the 2016 season and used
10k, 1k, 1k for training, validation, and testing respectively.
The segments are 25 frames long (i.e. 4 seconds) and con-
sist of only 5 nodes: the ball, ball hander, screener, and
defensive matchup for each of the players.

4The first edge type is “hard-coded” as non-edge and was
trained with a prior probability of 0.91. All other edge types
received a prior of 0.03 to favor sparse graphs that are easier to
visualize. We visualize test data not seen during training.

Figure 8. Distribution of learned edges between players (and the
ball) in the basketball sports tracking (SportVU) data.

We trained a CNN encoder and a RNN decoder with 2
edge types. For fair comparison, and because the trajectory
continuation is not PnR anymore, the encoder is trained on
only the first 17 time steps (as deployed in testing). Further
details are in the supplementary material. Results for test
MSE are shown in Figure 6. Our model outperforms a
baseline LSTM model, and is on par with the full graph.

To understand the latent edge types we show in Fig. 8 how
they are distributed between the players and the ball. As we
can see, one edge type mostly connects ball and ball handler
(off-ball) to all other players, while the other is mostly inner
connections between the other three players. As the ball and
ball handler are the key elements in the PnR play, we see
that our model does learn an important semantic structure
by separating them from the rest.

6. Conclusion
In this work we introduced NRI, a method to simultaneously
infer relational structure while learning the dynamical model
of an interacting system. In a range of experiments with
physical simulations we demonstrate that our NRI model is
highly effective at unsupervised recovery of ground-truth
interaction graphs. We further found that it can model the
dynamics of interacting physical systems, of real motion
tracking and of sports analytics data at a high precision,
while learning reasonably interpretable edge types.

Many real-world examples, in particular multi-agent sys-
tems such as traffic, can be understood as an interacting sys-
tem where the interactions are dynamic. While our model
is trained to discover static interaction graphs, we demon-
strate that it is possible to apply a trained NRI model to this
evolving case by dynamically re-estimating the latent graph.
Nonetheless, our solution is limited to static graphs during
training and future work will investigate an extension of the
NRI model that can explicitly account for dynamic latent
interactions even at training time.
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A. Further experimental analysis
A.1. Kuramoto LSTM vs. NRI comparison

From the results in our main paper it became evident that a
simple LSTM model excels at predicting the dynamics of
a network of phase-coupled oscillators (Kuramoto model)
for short periods of time, while predictive performance de-
teriorates for longer sequences. It is interesting to compare
the qualitative predictive behavior of this fully recurrent
model with our NRI (learned) model that models the state
xt+1 at time t+ 1 solely based on the state xt at time t and
the learned latent interaction graph. In Fig. 9 we provide
visualizations of model predictions for the LSTM (joint)
and the NRI (learned) model, compared to the ground truth
continuation of the simulation.

It can be seen that the LSTM model correctly captures the
shape of the sinusoidal waveform but fails to model the
phase dynamics that arise due to the interactions between
the oscillators. Our NRI (learned) model captures the quali-
tative behavior of the original coupled model at a very high
precision and only in some cases slightly misses the phase
dynamics (e.g. in the purple and green curve in the lower
right plot). The LSTM model rarely matches the phase of
the ground truth trajectory in the last few time steps and
often completely goes “out of sync” by up to half a wave-
length.

A.2. Spring simulation variants

In addition to the experiments presented in the main paper,
we analyze the following two variants of the spring simu-
lation experimental setting: i) we test a trained model on
completely non-interacting (free-floating) particles, and ii)
we add a third edge type with a lower coupling constant.

To test whether our model can infer an empty graph, we
create a test set of 1000 simulations with 5 non-interacting
particles and test an unsupervised NRI model which was
trained on the spring simulation dataset with 5 particles as
before. We find that it achieves an accuracy of 98.4% in
identifying ”no interaction” edges (i.e. the empty graph).

The last variant explores a simulation with more than two
known edge types. We follow the same procedure for the
spring simulation with 5 particles as before with the ex-
ception of adding an additional edge type with coupling
constant kij = 0.5 (all three edge types are sampled with
equal probability). We fit an unsupervised NRI model to
this data (K = 3 in this case, other settings as before) and
find that it achieves an accuracy of 99.2% in discovering the
correct edge types.

A.3. Motion capture visualizations

In Fig. 10 we visualize predictions of a trained NRI model
with learned latent graph for the motion capture dataset. We
show 30 predicted time steps of future movement, condi-
tioned on 49 time steps that are provided as ground truth
to the model. It can be seen that the model can capture the
overall form of the movement with high precision. Mistakes
(e.g. the misplaced toe node in frame 30) are possible due
to the accumulation of small errors when predicting over
long sequences with little chance of recovery. Curriculum
learning schemes where noise is gradually added to training
sequences can potentially alleviate this issue.

A.4. NBA visualizations

We show examples of three pick and roll trajectories in Fig.
11. In the left column we show the ground truth, in the
middle we show our prediction and in the right we show
the edges that where sampled by our encoder. As we can
see even when our model does not predict the true future
path, which is extremely challenging for this data, it still
makes semantically reasonable predictions. For example in
the middle row it predicts that the player defending the ball
handler passes between him and the screener (going over
the screen) which is a reasonable outcome even though in
reality the defenders switched players.

B. Simulation data
B.1. Springs model

We simulate N ∈ {5, 10} particles (point masses) in a 2D
box with no external forces (besides elastic collisions with
the box). We randomly connect, with probability 0.5, each
pair of particles with a spring. The particles connected by
springs interact via forces given by Hooke’s law Fij =
−k(ri − rj) where Fij is the force applied to particle vi
by particle vj , k is the spring constant and ri is the 2D
location vector of particle vi. The initial location is sampled
from a Gaussian N (0, 0.5), and the initial velocity is a
random vector of norm 0.5. Given the initial locations
and velocity we can simulate the trajectories by solving
Newton’s equations of motion PDE. We do this by leapfrog
integration using a step size of 0.001 and then subsample
each 100 steps to get our training and testing trajectories.

We note that since the leapfrog integration is differentiable,
we are able to use it as a ground-truth decoder and back-
propagate through it to train the encoder. We implemented
the leapfrog integration in PyTorch, which allows us to
compare model performance with a learned decoder versus
the ground-truth simulation decoder.
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Ground truth NRI (learned)LSTM (joint)

Figure 9. Qualitative comparison of model predictions for the LSTM (joint) model (left) and the NRI (learned) model (right). The ground
truth trajectories (middle) are shown for reference.

B.2. Charged particles model

Similar to the springs model, we simulate N ∈ {5, 10}
particles in a 2D box, but instead of springs now our particles
carry positive or negative charges qi ∈ {±q}, sampled
with uniform probability, and interact via Coulomb forces:
Fij = C · sign(qi · qj) ri−rj

||ri−rj ||3 where C is some constant.
Unlike the springs simulations, here every two particles
interact, although the interaction might be weak if they stay
far apart, but they can either attract or repel each other.

Since the forces diverge when the distance between particles
goes to zero, this can cause issues when integrating with
a fixed step size. The problem might be solved by using a
much smaller step size, but this would slow the generation
considerably. To circumvent this problem, we clip the forces
to some maximum absolute value. While not being exactly
physically accurate, the trajectories are indistinguishable to
a human observer and the generation process is now stable.

The force clipping does, however, create a problem for
the simulation ground-truth decoder, as gradients become
zero when the forces are clipped during the simulation.
We attempted to fix this by using “soft” clipping with a
softplus(x) = log(1 + ex) function in the differentiable
simulation decoder, but this similarly resulted in vanish-
ing gradients once the model gets stuck in an unfavorable
regime with large forces.

B.3. Phase-coupled oscillators

The Kuramoto model is a nonlinear system of phase-coupled
oscillators that can exhibit a range of complicated dynamics

based on the distribution of the oscillators’ internal frequen-
cies and their coupling strengths. We use the common form
for the Kuramoto model given by the following differential
equation:

dφi
dt

= ωi +
∑
j 6=i

kij sin(φi − φj) (20)

with phases φi, coupling constants kij , and intrinsic frequen-
cies ωi. We simulate 1D trajectories by solving Eq. (20)
with a fourth-order Runge-Kutta integrator with step size
0.01.

We simulate N ∈ {5, 10} phase-coupled oscillators in 1D
with intrinsic frequencies ωi and initial phases φt=1

i sam-
pled uniformly from [1, 10) and [0, 2π), respectively. We
randomly, with probability of 0.5, connect pairs of oscilla-
tors vi and vj (undirected) with a coupling constant kij = 1.
All other coupling constants are set to 0. We subsample the
simulated φi by a factor of 10 and create trajectories xi by
concatenating dφi

dt , sinφi, and the intrinsic frequencies ωi
(copied for every time step as ωi are static).

C. Implementation details
We will describe here the details of our encoder and decoder
implementations.

C.1. Vectorized implementation

The message passing operations v→e and v→e can be evalu-
ated in parallel for all nodes (or edges) in the graph and allow
for an efficient vectorized implementation. More specifi-
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Figure 10. Examples of predicted walking motion of an NRI model with learned latent graph compared to ground truth sequences for two
different test set trials.
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Figure 11. Visualization of NBA trajectories. Left: ground truth; middle: model prediction; right: sampled edges.

cally, the node-to-edge message passing function fv→e can
be vectorized as:

H1
e = fe([M

in
v→eH

1
v,M

out
v→eH

1
v]) (21)

with Hv = [h>1 ,h
>
2 , . . . ,h

>
N ]> ∈ RN×F and He ∈ RE×F

defined analogously (layer index omitted), where F and E
are the total number of features and edges, respectively.
(·)> denotes transposition. Both message passing matrices
Mv→e ∈ RE×N are dependent on the graph structure and
can be computed in advance if the underlying graph is static.
Min

v→e is a sparse binary matrix with Min
v→e,ij = 1 when

the j-th node is connected to the i-th edge (arbitrary order-
ing) via an incoming link and 0 otherwise. Mout

v→e is defined
analogously for outgoing edges.

Similarly, we can vectorize the edge-to-node message pass-
ing function fe→v as:

H2
v = fv(M

in
e→vH

1
e) (22)

with Min
e→v = (Min

v→e)
>. For large sparse graphs (e.g. by

constraining interactions to nearest neighbors), it can be ben-
eficial to make use of sparse-dense matrix multiplications,
effectively allowing for an O(E) algorithm.

C.2. MLP Encoder

The basic building block of our MLP encoder is a 2-layer
MLP with hidden and output dimension of 256, with batch
normalization, dropout, and ELU activations. Given this, the
forward model for our encoder is given by the code snippet
in Fig. 12. The node2edge module returns for each edge

the concatenation of the receiver and sender features. The
edge2node module accumulates all incoming edge features
via a sum.

x = self.mlp1(x) # 2−layer ELU net per node
x = self.node2edge(x)
x = self.mlp2(x)
x skip = x

x = self.edge2node(x)
x = self.mlp3(x)
x = self.node2edge(x)
x = torch.cat((x, x skip), dim=2)
x = self.mlp4(x)
return self.fully connected out(x)

Figure 12. PyTorch code snippet of the MLP encoder forward pass.

C.3. CNN Encoder

The CNN encoder uses another block which performs 1D
convolutions with attention. This allows for encoding with
changing trajectory size, and is also appropriate for tasks
like the charged particle simulations when the interaction
can be strong for a small fraction of time. The forward
computation of this module is presented in Fig. 13 and the
overall decoder in Fig. 14.

C.4. MLP Decoder

In Fig. 15 we present the code for a single time-step predic-
tion using our MLP decoder for Markovian data.
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# CNN block
# inputs is of shape ExFxT, E: number of edges,
# T: sequence length, F: num. features
x = F.relu(self.conv1(inputs))
x = self.batch norm1(x)
x = self.pool(x)
x = F.relu(self.conv2(x))
x = self.batch norm2(x)
out = self.conv out(x)
attention = softmax(self.conv attn(x), axis=2)

out = (out ∗ attention).mean(dim=2)
return out

Figure 13. PyTorch code snippet of the CNN block forward pass,
used in the CNN encoder.

# CNN encoder
x = self.node2edge(x)
x = self.cnn(x) # CNN block from above
x = self.mlp1(x) # 2−layer ELU net per node
x skip = x

x = self.edge2node(x)
x = self.mlp2(x)
x = self.node2edge(x)
x = torch.cat((x, x skip), dim=2)
x = self.mlp3(x)
return self.fully connected out(x)

Figure 14. PyTorch code snippet of the CNN encoder model for-
ward pass.

# Single prediction step
pre msg = self.node2edge(inputs)

# Run separate MLP for every edge type
# For non−edge: start idx=1, otherwise 0
for i in range(start idx, num edges):

msg = F.relu(self.msg fc1[i](pre msg))
msg = F.relu(self.msg fc2[i](msg))
msg = msg ∗ edge type[:, :, :, i:i + 1]
all msgs += msg

# Aggregate all msgs to receiver
agg msgs = self.edge2node(all msgs)
hidden = torch.cat([inputs, agg msgs], dim=−1)

# Output MLP
pred = F.relu(self.out fc1(hidden)
pred = F.relu(self.out fc2(pred)
pred = self.out fc3(pred)

return inputs + pred

Figure 15. PyTorch code snippet of a single prediction step in the
MLP decoder.

C.5. RNN Decoder

The RNN decoder adds a GRU style update to the single
step prediction, the code snippet for the GRU module is
presented in Fig. 16 and the overall RNN decoder in Fig. 17.

# GRU block
# Takes arguments: inputs, agg msgs, hidden
r = F.sigmoid(self.input r(inputs) +

self.hidden r(agg msgs))
i = F.sigmoid(self.input i(inputs) +

self.hidden i(agg msgs))
n = F.tanh(self.input n(inputs) +

r ∗ self.hidden h(agg msgs))
hidden = (1 − i) ∗ n + i ∗ hidden
return hidden

Figure 16. PyTorch code snippet of a GRU block, used in the RNN
decoder.

# Single prediction step
pre msg = self.node2edge(inputs)

# Run separate MLP for every edge type
# For non−edge: start idx=1, otherwise 0
for i in range(start idx, num edges):

msg = F.relu(self.msg fc1[i](pre msg))
msg = F.relu(self.msg fc2[i](msg))
msg = msg ∗ edge type[:, :, :, i:i + 1]
# Average over types for stability
all msgs += msg/(num edges−start idx)

# Aggregate all msgs to receiver
agg msgs = self.edge2node(all msgs)

# GRU−style gated aggregation (see GRU block)
hidden = self.gru(inputs, agg msgs, hidden)

# Output MLP
pred = F.relu(self.out fc1(hidden))
pred = F.relu(self.out fc2(pred))
pred = self.out fc3(pred)

# Predict position/velocity difference
pred = inputs + pred

return pred, hidden

Figure 17. PyTorch code snippet of a single prediction step in the
RNN decoder.

D. Experiment details
All experiments were run using the Adam optimizer
(Kingma & Ba, 2015) with a learning rate of 0.0005, de-
cayed by a factor of 0.5 every 200 epochs. Unless otherwise
noted, we train with a batch size of 128. The concrete distri-
bution is used with τ = 0.5. During testing, we replace the
concrete distribution with a categorical distribution to obtain
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discrete latent edge types. Physical simulation and sports
tracking experiments were run for 500 training epochs. For
motion capture data we used 200 training epochs, as models
tended to converge earlier. We saved model checkpoints
after every epoch whenever the validation set performance
(measured by path prediction MSE) improved and loaded
the best performing model for test set evaluation. We ob-
served that using significantly higher learning rates than
0.0005 often produced suboptimal decoders that ignored the
latent graph structure.

D.1. Physics simulations experiments

The springs, charged particles and Kuramoto datasets each
contain 50k training instances and 10k validation and test
instances. Training and validation trajectories where of
length 49 while test trajectories continue for another 20 time
steps (50 for visualization). We train an MLP encoder for
the springs experiment, and CNN encoder for the charged
particles and Kuramoto experiments. All experiments used
MLP decoders and two edge types. For the Kuramoto model
experiments, we explicitly hard-coded the first edge type as
a “non-edge”, i.e. no messages are passed along edges of
this type.

As noted previously, all of our MLPs have hidden and output
dimension of 256. The overall input/output dimension of
our model is 4 for the springs and charged particles exper-
iments (2D position and velocity) and 3 for the Kuramoto
model experiments (phase-difference, amplitude and intrin-
sic frequency). During training, we use teacher forcing in
every 10-th time step (i.e. every 10th time step, the model
receives a ground truth input, otherwise it receives its previ-
ous prediction as input). As we always have two edge types
in these experiments and their ordering is arbitrary (apart
from the Kuramoto model where we assign a special role to
edge type 1), we choose the ordering for which the accuracy
is highest.

D.1.1. BASELINES

Edge recovery experiments In edge recovery experi-
ments, we report the following baselines along with the
performance of our NRI (learned) model:

• Corr. (path): We calculate a correlation matrix R,
where Rij =

Cij√
CiiCjj

with Cij being the covariance

between all trajectories xi and xj (for objects vi and
vj) in the training and validation sets. We determine
an ideal threshold θ so that Aij = 1 if Rij > θ and
Aij = 0 otherwise, based on predictive accuracy on
the combined training and validation set. Aij denotes
the presence of an interaction edge (arbitrary type) be-
tween object vi and vj . We repeat the same procedure
for the absolute value of Rij , i.e. Aij = 1 if |Rij | > θ′

and Aij = 0 otherwise. Lastly, we pick whichever
of the two (θ or θ′) produced the best match with the
ground truth graph (i.e. highest accuracy score) and
report test set accuracy with this setting.

• Corr. (LSTM): Here, we train a two-layer LSTM with
shared parameters and 256 hidden units that models
each trajectory individually. It is trained to predict the
position and velocity for every time step directly and
is conditioned on the previous time steps. The input
to the model is passed through a two-layer MLP (256
hidden units and ReLU activations) before it is passed
to the LSTM, similarly we pass the LSTM output (last
time step) through a two-layer MLP (256 hidden units
and ReLU activation on the hidden layer). We provide
ground truth trajectory information as input at every
time step. We train to minimize MSE between model
prediction and ground truth path. We train this model
for 10 epochs and finally apply the same correlation
matrix procedure as in Corr. (path), but this time cal-
culating correlations between the output of the second
LSTM layer at the last time step (instead of using the
raw trajectory features). The LSTM is only trained on
the training set. The optimal correlation threshold is
estimated using the combined training and validation
set.

• NRI (sim.): In this setting, we replace the decoder of
the NRI model with the ground-truth simulator (i.e. the
integrator of the Newtonian equations of motion). We
implement both the charged particle and the springs
simulator in PyTorch which gives us access to gradi-
ent information. We train the overall model with the
same settings as the original NRI (learned) model by
backpropagating directly through the simulator. We
find that for the springs simulation, a single leap-frog
integration step is sufficient to closely approximate the
trajectory of the original simulation, which was gen-
erated with 100 leap-frog steps per time step. For the
charged particle simulation, 100 leap-frog steps per
time step are necessary to match the original trajectory
when testing the simulation decoder in isolation. We
find, however, that due to the force clipping necessary
to stabilize the original charged particle simulation, gra-
dients will often become zero, making model training
difficult or infeasible.

• Supervised: For this baseline, we train the encoder in
isolation and provide ground-truth interaction graphs
as labels. We train using a cross-entropy error and
monitor the validation accuracy (edge prediction) for
model checkpointing. We train with dropout of p = 0.5
on the hidden layer representation of every MLP in the
encoder model, in order to avoid overfitting.
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Path prediction experiments Here, we use the following
baselines along with our NRI (learned) model:

• Static: This baseline simply copies the previous state
vector xt+1 = xt.

• LSTM (single): Same as the LSTM model in
Corr. (LSTM), but trained to predict the state vector
difference at every time step (as in the NRI model).
Instead of providing ground truth input at every time
step, we use the same training protocol as for an NRI
model with recurrent decoder (see main paper).

• LSTM (joint): This baseline differs from LSTM (sin-
gle) in that it concatenates the input representations
from all objects after passing them through the input
MLP. This concatenated representation is fed into a sin-
gle LSTM where the hidden unit number is multiplied
by the number of objects—otherwise same setting as
LSTM (single). The output of the second LSTM layer
at the last time step is then divided into vectors of same
size, one for each object, and fed through the output
MLP to predict the state difference for each object sep-
arately. LSTM (joint) is trained with same training
protocol as the LSTM (single) model.

• NRI (full graph): For this model, we keep the latent
graph fixed (fully-connected on edge type 2; note that
edge types are exclusive, i.e. edges of type 1 are not
present in this case) and train the decoder in isolation in
the otherwise same setting as the NRI (learned) model.

• NRI (true graph): Here, we train the decoder in iso-
lation and provide the ground truth interaction graph
as latent graph representation.

D.2. Motion capture data experiments

Our extracted motion capture dataset has a total size of
8,063 frames for 31 tracked points each. We normalize all
features (position/velocity) to maximum absolute value of
1. Training and validation set samples are 49 frames long
(non-overlapping segments extracted from the respective
trials). Test set samples are 99 frames long. In the main
paper, we report results on the last 50 frames of this test set
data.

We choose the same hyperparameter settings as in the physi-
cal simulation experiments, with the exception that we train
models for 200 epochs and with a batch size of 8. Our
model here uses an MLP encoder and an RNN decoder (as
the dynamics are not Markovian). We further take sam-
ples from the discrete distribution during the forward pass
in training and calculate gradients via the concrete relax-
ation. The baselines are identical to before (path prediction
experiments for physical simulations) with the following

exception: For LSTM (joint) we choose a smaller hidden
layer size of 128 units and train with a batch size of 1, as
the model did otherwise not fit in GPU memory.

D.3. NBA experiments

For the NBA data each example is a 25 step trajectory of a
pick and roll (PnR) instance, subsampled from the original
25 frames-per-second SportVU data. Unlike the physical
simulation where the dynamics of the interactions do not
change over time and the motion capture data where the
dynamics are approximately periodic, the dynamics here
change considerably over time. The middle of the trajectory
is, more or less, the pick and roll itself and the behavior
before and after are quite different. This poses a problem
for fair comparison, as it is problematic to evaluate on the
next time steps, i.e. after the PnR event, since they are quite
different from our training data. Therefore in test time we
feed in the first 17 time-steps to the encoder and then predict
the last 8 steps.

If we train the model normally as an autoencoder, i.e. feed-
ing in the first N = 17 or 25 time-steps to the encoder and
having the decoder predict the same N , then this creates
a large difference between training and testing setting, re-
sulting in poor predictive performance. This is expected,
as a model trained with N = 17 never sees the post-PnR
dynamics and the encoder trained with N = 25 has a much
easier task than one trained on N = 17. Therefore in order
for our training to be consistent with our testing, we feed
during training the first 17 steps to the encoder and predict
all 25 with the decoder.

We used a CNN encoder and RNN decoder with two edge
types to have comparable capacity to the full graph model.
If we “hard code” one edge type to represent “non-edge”
then our model learns the full graph as all players are highly
connected. We also experimented with 10 and 20 edge types
which did not perform as well on validation data, probably
due to over-fitting.


