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Data centers are large scale, energy-hungry infrastructure serving the increasing computational demands as
the world is becoming more connected in smart cities. The emergence of advanced technologies such as cloud-
based services, internet of things (IoT) and big data analytics has augmented the growth of global data centers,
leading to high energy consumption. This upsurge in energy consumption of the data centers not only incurs
the issue of surging high cost (operational and maintenance) but also has an adverse effect on the environment.
Dynamic power management in a data center environment requires the cognizance of the correlation between
the system and hardware level performance counters and the power consumption. Power consumption
modeling exhibits this correlation and is crucial in designing energy-efficient optimization strategies based on
resource utilization. Several works in power modeling are proposed and used in the literature. However, these
power models have been evaluated using different benchmarking applications, power measurement techniques
and error calculation formula on different machines. In this work, we present a taxonomy and evaluation of 24
software-based power models using a unified environment, benchmarking applications, power measurement
technique and error formula, with the aim of achieving an objective comparison. We use different servers
architectures to assess the impact of heterogeneity on the models’ comparison. The performance analysis of
these models is elaborated in the paper.
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1 Introduction
Data centers are substantial computing facilities serving as a back-end infrastructure for enabling
globally competitive innovations and contributing to the socio-economic development [22, 37].
There is rapid growth to data centers comprising of thousands of computing nodes due to the
emergence of smart cities and consequently the need of paradigms such as Cloud Computing [84],
IoT [23] and Big Data Analytics [60]. This continuous storage and computing needs lead technical
firms like Microsoft and Google to expand their data center infrastructures as large as a football
field able to host thousands of nodes[24]. The data center services market is projected to grow at a
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compound annual growth rate (CAGR) of 13.69% over the forecast period of 2018-2023 [118]. A
data center, however, has a massive energy consumption engendering various economic problems
and environmental hazards.

Energy consumption of data centers is becoming an important issue in an enterprise environment
and has gained significant importance in recent years. A typical data center may consume energy
equivalent to that of 25,000 households [24]. According to the report by National Resources Defense
Council (NRDC) in the USA, the data centers in 2013 consumed 91 billion kWh of energy, comparable
to 34 large power plants (coal fired) [32]. This energy consumption of the data center is anticipated
to reach around 140 billion kWh by 2020, equivalent to the annual output of 50 power plants,
incurring the cost of $13 billion in electricity to the American business. Furthermore, a typical
data center’s energy cost increases by 100% every five years [24]. The carbon emissions caused by
data centers in 2005 in the USA was as much as that of a mid-sized nation like Argentina [81]. It is
expected that by 2020 the annual carbon emission of the data centers will reach 100 million metric
tons [32].

The data center’s power consumption comprises of [49, 91, 124]: 1) the power consumed by the
data center’s IT equipment such as computing servers and storage (56%), 2) the power consumed by
the infrastructure facilities such as the cooling systems (30%), the power distribution/conditioning
systems (8%), and the lighting (1%), and 3) the power consumed by the network (5%) [91, 124].
To reduce the data center energy consumption, different methods have been introduced in the
literature, such as deploying energy-efficient algorithms, modifying the hardware components
architecture [83], designing measures for efficient air handling [50] and cooling [52], and using
efficient options for the power supply. These methods require modeling of the relationship between
systems’ power consumption (considered as dependent variable) and performance counters (consid-
ered as independent variable) [114]. Consequently, data center operators need an accurate power
model for designing an energy efficient system [98, 113], managing a center power consumption
[66] and using energy-aware scheduling for optimization [121]. These power models proposed in
the literature are classified as 1) hardware-based models that use fan speed, voltage, current, capaci-
tance, resistance, and motherboard components as the independent variables, and 2) software-based
models that target either individual subsystems of a server, such as CPU, memory, disk and network,
or a virtual machine, or a full-system (a computing server) [86]. We use the terminology computing
server for a full-system in the remainder of the paper. The hardware-based power models require
sensors to measure different variables on a server’s hardware. This adds in extra hardware and
energy consumption costs incurred by these sensors attached to thousands of servers in a data
center. However, the software-based models do not require external sensors to get the values of
the model variables adding no extra cost. Therefore, in this paper, we focus on the software-based
power models. The software models use performance metrics provided by the operating system that
we call System_Performance_Metrics (S_PM) based models, or performance monitoring counters
provided by the hardware subsystems of a server that we call System_Performance_Counters
(S_PC) based, or a combination of system performance metrics and counters that we call Sys-
tem_Performance_Metrics_Counters (S_PMC) based. The metrics provided by the operating system
indicate the utilization level of a system (CPU utilization, memory utilization, disk I/O rate and
network I/O rate), whereas the counters provided by the hardware indicate the performance of the
different server’s subsystems, such as number of cache misses [2], number of branch instructions
[1], and number of interrupts [3]. In this work, we evaluate the performance of software-based
computing server’s power consumption models that have been proposed in the literature. However,
we are unaware of any objective comparison of these models using a unified experimental setup
for a diverse set of applications. This paper focuses to address this void.
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In this study, we present a taxonomy and comparative evaluation of software-based power
models. We evaluate their performance in terms of standard error of estimation. This is in a unified
environment and experimental setup. In this evaluation, we make use of four different tools for
models formulation and validation and five different applications for models testing. The key
research contributions of this work are as follows.

• We classify the work on power modeling into software and hardware-based models, and
present a taxonomy of different software-based power models in the data center’s power
consumption modeling literature. We discuss the temporal evolution of the various models
and capture the assumptions conducting to the development of a given model in a certain
period of time.

• We evaluate the performance of 24 different software-based powermodels in terms of standard
error of estimation using a diverse set of benchmarking applications in a unified experimental
setup. The experiments show that the support vector machine (SVM) power model has the
least standard error of estimation.

• The portability of the relationship between a server’s power consumption and the user
and system performance counters is also verified on different server architectures in our
experimental testbed.

To our knowledge, this is the first work to classify software-based power models in the literature
and evaluate their performance in a unified environment and setup.

The rest of the paper is organized as follows. Section II synthesizes a taxonomy of the works on
software-based powermodels. The experimental setup, experiments and the performance evaluation
in terms of standard error of estimation for the studied power models are described in Section
III. Section IV overviews the related works. The paper is concluded with the lessons learned and
possible future research directions in Section V.

2 Software-based Power Models
We first present the taxonomy (Figure 1) and limitations (Table 1) of state-of-the-art software-based
power models (Sub-section 2.1). This allows to capture which were the assumptions conducting
to the development of a given model in a certain period of time and unravel on one hand the
technological development of servers and, on the other hand, the corresponding improvements
in the precision of the models. In sub-section 2.2, we recall the experimental setups used for the
evaluation of these models in the literature along with their precision (Table 2) and describe the
workflow of power model development system that is used to build the studied power models.

2.1 Taxonomy of Software-based Power Models
We present a classification and temporal evolution of the software-based power models in the
literature. We classify these models into two primary categories: 1) linear and 2) non-linear. We
further classify the models in these categories into 1) mathematical formula based on fixed slope
and intercept and 2) machine learning based on variable slope and intercept. The former is based on
a server’s idle and full load power consumption values. It does not consider the implication of the
spatial distribution of power consumption for the S_PM and S_PC values which lie between the idle
and the full load states of the server. Whereas, the machine learning models are developed based
on the distribution of the power consumption of the S_PM and S_PC utilization values. Figure 1
shows our taxonomy of power models in the literature.

2.1.1 Linear Power Models

ACM Comput. Surv.



4 Leila Ismail and Huned Materwala

Fig. 1. Taxonomy of the power models. The numbers above the classified categories denote the sub-subsection
and sub-sub-subsection, and the gray box besides each category represents the corresponding equation
numbers of the power models.

2.1.1.1 Mathematical Formula: Single Variable Linear With Fixed Slope and Intercept
(SVLF)

In the 2000s, with the research attention drawn towards the energy efficiency of the data centers due
to the onset of large-scale web services and the underlyingmassive parallel computing infrastructure,
studies were conducted to analyze the computing servers’ hardware power consumption breakdown
[21, 41]. [21] studied the power consumption of web servers using real workloads derived from
the logs of three production websites (1998 Winter Olympics, a financial services company, and
Information Resource Caching project affiliated with the National Laboratory for Applied Network
Research). Results from this study stated that the server’s power consumption is highly dominated
by its CPU utilization in a linear manner, influencing many works, that come after, on server
power consumption modeling. In 2006, [57] formulated a linear model as stated in Equation 1 to
calculate power consumption (P) of a server with CPU utilization (ucpu ) as the independent variable
(S_PM-based). The slope of the linear model is the difference between the power consumption
when the server is at full load (PMAX ) and the power consumption when the server is idle (PMIN ),
and the intercept of the model being PMIN . However, the model was not evaluated for its accuracy
by the authors. Later in 2007, [41] studied the power usage of thousands of servers for workloads
taken from different classes of web services such as Websearch, Webmail, and Mapreduce for over
a period of approximately six months and confirmed the results obtained by [21].

P = (PMAX - PMIN ) × ucpu + PMIN (1)

ACM Comput. Surv.
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The model in Equation 1 was later evaluated by [41] and [27] for its accuracy. The model has
been used by various works in the literature for electricity consumption cost prediction in a
heterogeneous server environment [92], for energy-aware resource management technique [47],
and for energy-efficient cloud computing [35, 72, 95, 101, 122]. The model in Equation 1 was
then presented by [22] using the ratio PMIN

PMAX
denoted by k as stated in Equation 2. The slope

PMAX − PMIN and the intercept PMIN of Equation 1 are then represented as [1 − k] × PMAX and
k × PMAX respectively in Equation 2. Substituting the value of k in Equation 2 yields to Equation
1, making them identical. The model has been used by various works on energy efficient cloud
resource management in the literature [12, 58, 89, 109].

P = ([1 − k] × PMAX × ucpu ) + (k × PMAX ) (2)

Later in the year 2007, [41] showed that an idle server almost consumes 70% of its peak power
consumption (i.e. k = 0.7). Based on this study, [14] stated a S_PM-based power model as in Equation
3 derived from Equation 2 by substituting the value of k as 0.7. The model has been used in the
literature for data center energy efficiency [56, 103].

P = PMAX × (0.7 + 0.3 × ucpu ) (3)

In 2011, with the advancement of cloud computing technology wherein computing infrastructure
and applications are provided as services to end users under pay-per-use model, [25] developed
CloudSim software for modeling and simulation of cloud computing environments and evaluation
of resource provisioning algorithms. The power model used in the simulation software to predict
the power consumption for executing the cloud applications is based on the method of linear
interpolation [70] using CPU utilization as the independent variable (S_PM-based) as stated in
Equation 4. Linear interpolation assumes a piece-wise linear relation between each interval of
CPU utilization values and corresponding power consumption values instead of assuming a single
linear function between idle and full load utilization. The model was later adopted by various
works using CloudSim to evaluate the energy efficiency of the cloud resource allocation algorithms
[11, 15, 28, 42, 65, 69, 94, 117].

P = P1 + (∆ × (
ucpu − u1cpu

10
) × 100) (4)

where P1 and P2 are the power values corresponding to the CPU utilization u1 and u2 respectively
(u1 ≤ u ≤ u2) and ∆ is the slope of the line between points (u1, P1) and (u2, P2).

In 2013, with the accelerating adoption of cloud computing serving applications of type I/O
and web-based interaction, a significant amount of network is then used due to the virtualization
of computing servers. Therefore, [63] studied the energy consumption of servers in a cloud com-
puting environment for energy efficiency for network-intensive benchmarks and developed the
relationship between the power consumed by an application running on a server and the applica-
tion’s throughput as stated in Equation 5. The power model is S_PM-based, using the application’s
throughput as the independent variable.

P = ([PMAX - PMIN ] ×
Throuдhput

ThrouдhputMax
) + PMIN (5)

where the throughput is application specific and is defined as the amount of load executed per unit
of time. For instance, the throughput of a network-intensive HTTP application is known as the
request rate defined by the number of requests processed per second.

ACM Comput. Surv.



6 Leila Ismail and Huned Materwala

2.1.1.2 Machine Learning Linear With Variable Slope and Intercept (MLLV)

• Single Variable Linear Regression (SVLR): In 2008, [93] proposed a power management solution
for data center based on a predicted power consumption value using a fitted-line regression
model as stated in Equation 6. The authors experimentally collected the power consumption
values of a server while running workloads at different CPU utilization values to develop this
S_PM-based model. The linear regression [13] model develops a linear relationship between
the power consumption and the CPU utilization by calculating an intercept and a slope for
the linear line. The model was later used by the works on energy-aware scheduling in a data
center [16, 17, 48] and the works on power consumption modeling [90, 123].

P = α + βucpu (6)

where α and β are the intercept and slope of the regression line whose values are calibrated
for each server type experimentally such that the squared error is the minimum.
In 2010, [115] used the same linear regression model stated in Equation 6 for power and
cooling management in the data centers. The authors fixed the value of intercept at server’s
idle power consumption as stated in Equation 7, instead of calibrating the value of intercept
experimentally (Equation 6).

P = PMIN + βucpu (7)
In 2010,[67] conducted experiments on servers usingweb-transactions, HPC, and I/O-intensive
workloads and found that the linear regression power model based on the CPU utilization
only (Equation 6) predicts the power consumption with a large error. Consequently, the
authors proposed a S_PM-based power model to establish a linear relationship between the
power consumption of an application and the application’s throughput to predict the power
of heterogeneous applications as stated in Equation 8.

P = α + β(Throuдhput) (8)

where, throughput is application specific and defined as the number of requests executed per
second.

• Multi Variable Linear Regression (MVLR): In 2006, [39] conducted experiments on a blade
server to study its metric-level power consumption (CPU, memory, disk, and network) using
different benchmarks such as SPECcpu2000 integer, SPECcpu2000 floating point, SPECjbb2000,
SPECweb2005, the streams, and the matrix multiplication. Based on these results, the authors
stated that the memory power consumption is likely to be equally important, if not more, as
that of the CPU. Moreover, the power consumed by the disk and the network I/O peripherals
can not be neglected. Consequently, the authors proposed a power consumption model based
on multi linear regression as stated in Equation 9, with CPU utilization (ucpu ), memory
utilization (umem), disk I/O rate (udisk ) and network I/O rate (unet ) as the independent
variables (S_PM-based). The model was later used by [104] while profiling power usage in
cloud computing environment. In 2014, [9] proposed multi regression model as stated in
Equation 10 using the performance metrics similar to that in Equation 9. However, the model
used the server’s idle power consumption as the intercept of the model instead of calculating
it based on the regression fitted-hyperplane.

P = α + β1ucpu + β2umem + β3udisk + β4unet (9)

P = PMIN + β1ucpu + β2umem + β3udisk + β4unet (10)
where α , β1, β2, β3, and β4 are the model parameters calibrated for each server type experi-
mentally such that the squared error of estimation is the minimum.
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In 2010, [64] examined the power consumption of a server and found that the most power
consuming components of a server are the CPU, the memory and the disk. Based on these
results, the authors proposed a S_PM-based multi regression power model as stated in
Equation 11. The model was later used by [75].

P = α + β1ucpu + β2umem + β3udisk (11)

Later in 2010, [20] conducted experiments and found that the power consumption of a server
is a linear function of the CPU load, memory utilization, disk operations per second and
instruction cache. Based on these results, the authors proposed a model based on S_PMC as
in Equation 12. In the same year, [34] conducted experiments to study the energy consumed
by different applications. The authors used synthetic workload to stress the server and
simultaneously measured the power consumption and 165 server performance indexes. Nine
significant S_PMC, such as the square of CPU utilization, context switches, cache references,
square of cache misses, disk read/write per second, number of TLB interrupts, RES interrupts,
NMI interrupts and LOC interrupts corresponding to power consumption are then used to
develop a fine-grained power model as stated in Equation 13.

P = α + β1ucpu + β2umem + β3udisk + β4cache (12)

P = PMIN +

9∑
n=1

βnCn (13)

where Cn are the performance counters.
In 2012, [119] studied different hardware and software power measurement solutions for HPC
applications. Based on the analysis presented, the hardware solutions are expensive compared
to the software ones. The authors proposed S_PMC based model for power prediction as
stated in Equation 14 using LLC load misses, LLC loads, LLC store misses, LLC stores, branch
misses, branches, cache misses, cache references, context switches, cycle, dTLB load misses,
dTLB loads, dTLB store misses, dTLB stores, iTLB load misses, iTLB loads, instructions,
major and minor faults, page faults, CPU utilization, number of bus transactions, and DRAM
access as the independent variables. In addition to these variables, the model also used CPU
temperature and frequency. The authors developed different models using only the highest
CPU frequency and using all the CPU frequencies. The authors studied the correlation of
S_PMC with the power consumption and used all the variables that increased the prediction
accuracy, starting from the one which has the highest correlation.

P = β0 +
33∑
n=1

βnCn (14)

Later in 2013, [62] studied the power consumption of HPC servers using a set of real-life
applications. The authors proposed the use of clustering approach to group the applications
having similar power characteristics. Each group of applications have a different power
model. The selection of power model is done automatically using decision tree. The authors
proposed S_PC-based power model as stated in Equation 15 using 24 performance counters
namely: LLC load misses, LLC loads, LLC stores, LLC store misses, branches, cache misses,
cache references, context switches, cycles, dTLB load misses, dTLB loads, dTLB stores, dTLB
store misses, iTLB loads, iTLB load misses, instructions, major faults, minor faults, page faults,
DRAM access 1 and 2, and number of bus transactions. In addition to these counters, the
model also uses CPU temperature.

ACM Comput. Surv.



8 Leila Ismail and Huned Materwala

P = α +
24∑
n=1

βnCn (15)

2.1.2 Non-Linear Models

2.1.2.1 Mathematical Formula: Single Variable Non-Linear With Fixed Slope and Inter-
cept (SVNLF)

In 2007, while studying the power usage characteristics of servers, [41] confirming that the power
consumption of a server is highly dominated by the server’s CPU utilization, the authors presented,
in addition to the linear power model stated previously in Equation 1, an empirical non-linear
power model. The authors performed experiments on thousands of heterogeneous servers and
found that S_PM-based non-linear power model, stated in Equation 16, fits the power consumption
curve of the server better than the linear model (Equation 1). This non-linear model was later used
by various works on power consumption modeling [92, 107].

P = ([PMAX - PMIN ] × [2ucpu - urcpu ]) + PMIN (16)

where r is the calibration parameter whose value is obtained experimentally for each server type
such that it minimizes the squared error of estimation.
Later in 2007, considering the increasing concern of power consumption in streaming-media

servers, [76] studied the power behavior of the media servers. The authors performed experiments
and observed the power consumed by different media servers using streaming media workloads
and found that the power consumption of the servers is based on the idle power and the full load
power, and the power consumption is related to the CPU utilization of the server. The results of
the experiments showed that the power consumption of the media servers increases non-linearly
when the CPU utilization of the server increases from 0% to 100%. Based on these observations, [76]
considered that the power consumption of a streaming-media server as an exponential function of
the server’s CPU utilization and proposed a S_PM-based power model as stated in Equation 17.
The model was later used by [108] for energy efficient resource management in cloud service data
centers.

P = ([PMAX - PMIN ] × [αuβcpu ]) + PMIN (17)
where α and β are the model parameters calibrated for each server type experimentally such that
the squared error of estimation is the minimum.

2.1.2.2 Machine Learning Non-Linear With Variable Slope and Intercept (MLNLV)

• Single Variable Polynomial Regression (SVPR): In 2012, [61] extended the linear regression
power model based on CPU utilization only (Equation 6) to quadratic model as stated in
Equation 18 based on the fact that the power consumption of a server is proportional to
the square of the CPU frequency. This relationship between a server’s power consumption
and the CPU frequency is due to Dynamic Voltage and Frequency Scaling (DVFS) capability
exhibited by a server with its advancement. DVFS is a technique that dynamically adjusts
the voltage and frequency of a server’s CPU to optimize resource allocation and maximize
power savings when the resources are not required [71]. In the same year, [53] presented
a power model having a polynomial of degree ’r’ as stated in Equation 19 instead of using
the quadratic polynomial as in Equation 18 to avoid over-fitting of the model. In 2013, [123]
performed experiments on seven heterogeneous servers using the SPECpower benchmark

ACM Comput. Surv.
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[31] to analyze the accuracy of the linear regression model based on the CPU utilization
(Equation 6). The results showed that not all the servers hold the linear relationship between
power consumption and CPU utilization. Based on this finding, the authors extended the linear
model to higher degree polynomial models of degree two and three as stated in Equations
18 and 20 respectively and found that the polynomial models are more accurate than the
linear model. The models in Equations 18-20 are S_PM-based using CPU utilization as the
independent variable. In 2016, [26] used polynomial regression to capture the non-linear
behavior between S_PM independent variables and server power consumption.

P = α + β1ucpu + β2u
2
cpu (18)

P = α + β1ucpu + β2u
r
cpu (19)

P = α + β1ucpu + β2u
2
cpu + β3u

3
cpu (20)

where α , β1, β2, β3, and r are the model parameters calibrated for each server type experi-
mentally such that the squared error of estimation is the minimum.

• Lasso Regression (LR): In 2011, [82] studied the power consumption of servers corresponding
to the CPU and memory utilization values. The authors found that the CPU and memory
variables are independent of each other and consequently using a linear regression model
based on these variables might not produce accurate results. The authors proposed the
use of polynomial regression of order 3 with CPU and memory utilization values as the
independent variables. Consequently, the S_PM-based model has linear, quadratic, and cubic
functions of the CPU and memory utilization values (CPU,CPU 2,CPU 3, mem,mem2,mem3).
To reduce the number of estimators, the authors proposed the use of lasso regression along
with the polynomial, which they call as polynomial with lasso. Lasso regression is a linear
model which performs L1 regularization that reduces the number of regression variables
and obtains a subset of variables that minimizes the prediction error [106]. Equation 21
shows the basic function of the polynomial with lasso power model. In addition, the authors
also proposed the use of exponential function along with the polynomial leading to the
exponents of linear, quadratic, and cubic functions of the CPU and memory utilization values
(eCPU ,eCPU 2 ,eCPU 3 ,emem ,emem2 ,emem3 ). Lasso regression is performed in a similar way to
reduce the number of estimators. The basic function of the polynomial + exponential with
lasso is stated in Equation 22. The polynomial with lasso and polynomial + exponential with
lasso models were later compared and used by [79] for energy-efficient scheduling in cloud
computing.

ϕ(.) = {xai ; 1 ≤ a ≤ 3} (21)

ϕ(.) = {exai ; 1 ≤ a ≤ 3} (22)
where xi is the CPU and the memory utilization.
In 2017, [80] experimentally found that the power consumption of a server is a function
of various S_PC that corresponds to a server’s hardware resources such as the processor,
the random access memory, the network interface controller. The authors used 30 different
S_PC representing the hardware resources to develop the relationship between the server’s
power consumption and resource utilization. The exposed low-level system performance
counters (S_PC) are branch-instructions, instructions, cache- misses, L1-icache-load-misses,
branch-loads, branch-load-misses, LLC-loads, LLC-store-misses, LLC-load-misses, LLC-stores,
dTLB-store-misses, dTLB-load-misses, dTLB-loads, dTLB-stores, bus-cycles, L1-dcache-stores,
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L1-dcache-load-misses, L1-dcache-loads, CPU cycles, branch-misses, cache-references, iTLB-
loads, iTLB-load-misses, node-load, node-stores, node-load-misses, node-stores-misses, ref-
cycles, number of if octets out, and number of if octets in. In order to avoid over-fitting by
only selecting the significant counters for a server, the author proposes the use of Lasso
regression. Equation 23 shows the minimization function for the lasso regression model.

minimize
w

1
2nsamples

| |Xw − y | |22 + α | |w | |1 (23)

• Support Vector Machines (SVM): In 2011, [82] found that the CPU and memory utilization
values of a server are interdependent and cannot be used in a linear model to accurately
predict the power consumption of the server. The authors proposed the use of SVM-based
regression model to predict the power consumption using the function stated in Equation
24. SVM regression aims at finding a linear hyperplane, that fits the non-linearly correlated
multidimensional regression parameters to the output variable [100]. The model is S_PM-
based using CPU and memory utilization as the independent variables. The model was later
evaluated and used by [79] for energy-efficient scheduling in cloud computing.

f (x) =Wϕ(x) + b (24)
where W and b are the regression parameters calculated using the optimization problem
to minimize the function stated in Equation 25 and ϕ(x) is a function of CPU and memory
utilization.

minimize
w,b,ζ

1
2
| |W | |2 +C

N∑
i=1

(ζi + ζ ∗i ) (25)

where C is the error penalty constraint, and ζi and ζ ∗i are the slack variables bounding the
allowable regression errors.

• Deep Neural Networks (DNN): In 2016, [74] stated that the static power models such as SVLF
and SVNLF can not predict the power consumption accurately due to the heterogeneous and
dynamic nature of workloads in a data center. The authors proposed the use of deep neural
networks to analyze the trend in the past data center power consumption for prediction. The
proposed deep learning prediction model is based on recursive auto-encoder and uses the
power consumption data of a server corresponding to its CPU utilization, CPU load averaged
over 5, 10 and 15 minutes, memory utilization, number of disk read/write, packets/s in and
out, and the file system used/available for training the model (S_PM-based). The recursive
auto-encoder are neural networks that encodes the input into a latent space and tries to
reconstruct the input as the output [105]. The auto-encoder output is then used to predict the
value of power consumption such that it minimizes the objective function stated in Equation
26.

ϵRAE = ϵPRD × 0.95 + ϵAE × 0.05 (26)
where ϵPRD and ϵAE are the prediction error and the reconstruction error respectively. The
value of ϵPRD and ϵAE are calculated using Equation 27 and 28.

ϵPRD =

∑Ntrain
i=1 (| |y(t) − y ′(t)| |)2

Ntrain
+ 0.0001 × (||W | |)2 (27)

ϵAE =

∑Ntrain
i=1 ErrREC (t)

Ntrain
(28)

where Ntrain is the size of training data set, ϵPRD is the mean square error of the predicted
values using the L2-norm regularization parameter, and Errr ec is the reconstruction error.
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• Artificial Neural Networks (ANN): In 2015, [33] conducted an empirical study showing that
the CPU-based linear power models do not provide accurate power prediction, especially
for servers having multicore processor. This is mainly due to two reasons: 1) the power
consumption has a non-linear relationship with the number of cores utilized, and 2) the
power consumption of a server is application dependent for a given CPU utilization. The
authors proposed the use of artificial neural networks for the prediction of power consumption.
They used multilayer perceptron (MLP), which is a feedforward ANN composed of one or
more hidden layers. The output of each hidden layer is computed using Equation 29.

a = ϕ(Wi + b) (29)
where W is the weight matrix, i is in input vector that consists of the independent variables,
b is the bias vector, ϕ(.) is the activation function and a is the output vector, i.e., the predicted
power consumption.
The authors used a MLP model with two hidden layers and a sigmoid activation function. The
power model is based on different S_PMC variables such as number of instructions, cycles,
cache references, cache misses, branch instructions, branch misses, bus cycles, idle cycles
frontend, task clock, page faults, context switches, CPU migrations, major and minor faults,
L1d loads, L1d load misses, L1d stores, L1d store misses, L1d prefetch misses, L1i load misses,
LLC loads, LLC load misses, LLC stores, LLC store misses, L1d prefetches, LLC prefetch
misses, dTLB loads, dTLB load misses, dTLB stores, dTLB store misses, iTLB loads, iTLB load
misses, branch loads, branch load misses, node loads, node load misses, node stores, node
store misses, node prefetches, node prefetch misses, CPU usage, received and sent bytes, and
CPU time. In addition to these variables the model also uses CPU temperature and frequency.

• Gaussian Mixture Models (GMM): In 2010, [38] performed experiments to study the power
consumption of heterogeneous applications at different CPU utilization levels. The results
show that the relationship between the power consumption and the CPU utilization is not
always linear but it is application specific. The authors found that the power consumption
increases linearly with the CPU utilization for an application having high instructions per
cycle (IPC), while for an application having high memory access with an increase in the CPU
utilization after a certain value, there is no further increase in power consumption. Moreover,
for an application having high cache conflicts, the power consumption decreases after certain
CPU utilization value. Consequently, the authors proposed a power model based on different
S_PMC variables such as CPU utilization, instructions per cycles (IPC), memory access and
cache transactions as the independent variables as stated in Equation 30. The prediction is
done using Gaussian mixture model (GMM) to dynamically map different clusters of power
consumption values with the corresponding clusters of performance metrics. GMM is a
probabilistic model that assumes all the data points of distribution are generated from a
mixture of a finite number of Gaussian distributions with unknown parameters [96].

P = f (CPU , IPC,memaccess, cachetransactions) (30)

Table 1. Limitations of Software-based Power Models.

Power
Model
Equa-
tion

Work Limitations

Mathematical Formula: SVLF [S_PM - based]
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1 and 2 [12, 22, 27,
35, 41, 47,
57, 58, 72,
89, 92, 95,
101, 109,
122]

The model is based only on the minimum and the maximum server
power consumption values and does not take into consideration the
power consumption values of a server’s CPU utilization between its
idle and full load state.

3 [14, 56,
103]

The accuracy of the model depends on the ratio of PMIN to PMAX . If the
ratio is not close to 0.7, the model gives high value of error. Moreover,
the model does not consider the power consumption values for the
CPU utilization values between 0% and 100%.

4 [11, 15,
25, 28, 42,
65, 69, 94,
117]

To predict a power consumption value p for a CPU utilization u, the
model requires the power consumption values p1 and p2 corresponding
to the CPU utilization values u1 and u2 respectively, such that u1 <
u < u2.

5 [63] The model requires the power consumption values corresponding to
the minimum and the maximum throughput values for each appli-
cation type. Moreover, the model does not consider the applications’
power consumption behavior between the minimum and the maximum
throughput values.

Machine Learning: MLLV - SVLR [S_PM - based]
6 [16, 17,

48, 90, 93,
123]

The model’s accuracy depends on the deviation of the training data set
values from the fitted regression line. Moreover, the model requires
calibration for the values of α and β for each server architecture type.

7 [115] The model’s accuracy depends on the deviation of the training data set
values from the fitted regression line and on the increment in power
consumption for idle server and server with minimum load. The higher
the increment, the more will be the error. Moreover, the model requires
calibration for the values of β for each application type on each server
architecture type.

8 [67] The model’s accuracy depends on the deviation of the training data set
values from the fitted regression line. Moreover, the model requires
calibration for the values of α and β for each server architecture type.

Machine Learning: MLLV - MVLR [S_PM - based]
9 [39, 104] The model’s accuracy depends on the deviation of the training data set

values from the fitted regression Euclidean hyperplane. Moreover, the
model requires calibration for the values of the regression parameter
for each server architecture type.

10 [9] The model’s accuracy depends on the deviation of the training data set
values from the fitted regression Euclidean hyperplane. The accuracy
also depends on the increment in power consumption for idle server
and server with minimum load. The higher the increment, the more
will be the error. Moreover, the model requires calibration for the
values of the regression parameter for each server architecture type.
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11 [64, 75] The model’s accuracy depends on the deviation of the training data set
values from the fitted regression Euclidean hyperplane. Moreover, the
model requires calibration for the values of the regression parameter
for each server architecture type. The model gives a high value of error
for network-intensive applications.

Machine Learning: MLLV - MVLR [S_PMC - based]
12 [20] The model’s accuracy depends on the deviation of the training data set

values from the fitted regression Euclidean hyperplane. Moreover, the
model requires calibration for the values of the regression parameter
for each server architecture type.

13 [34] The accuracy of the model depends on how close the data are to the
fitted regression model. The model has high probability of over-fitting
the data. Moreover, the model requires calibration for the values of the
regression parameter for each server architecture type.

14 [119] The accuracy of the model depends on how close the data are to the
fitted regression model. The model has high probability of over-fitting
the data. Moreover, the model requires calibration for the values of
the regression parameter for each server architecture type. It requires
CPU temperature hardware indicator.

Machine Learning: MLLV - MVLR [S_PC - based]
15 [62] The model’s accuracy depends on the deviation of the training data set

values from the fitted regression Euclidean hyperplane. Moreover, the
model requires calibration for the values of the regression parameter
for each server architecture type and needs to perform different trans-
formations of the performance counters having non-linear relationship
with power consumption. It requires CPU temperature hardware indi-
cator.

Mathematical Formula: SVNLF [S_PM - based]
16 [41, 92,

107]
The model is based only on the minimum and the maximum server
power consumption values without considering the power for a
server’s CPU utilization values between its idle and full load state.
Moreover, the model requires calibration for the value of r for each
server architecture type.

17 [76, 108] The model is based only on the minimum and the maximum server
power consumption values and requires calibration for the values of α
and β for each server architecture type.

Machine Learning: MLNLV - SVPR [S_PM - based]
18 [61, 123] The model’s accuracy depends on the deviation of the training data

set values from the fitted regression polynomial curve. Moreover, the
model requires calibration for the values of the regression parameter
for each server architecture type.

19 [53] The model’s accuracy depends on the deviation of the training data
set values from the fitted regression polynomial curve. Moreover, the
model requires calibration for the values of the regression parameter
for each server architecture type.
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20 [123] The model’s accuracy depends on the deviation of the training data
set values from the fitted regression polynomial curve. The model
generally suffers from the issue of over-fitting. Moreover, the model
requires calibration for the values of the regression parameter for each
server architecture type.

- [26] The model’s accuracy depends on the deviation of the training data
set values from the fitted regression polynomial curve. The model
generally suffers from the issue of over-fitting. Moreover, the model
requires calibration for the values of the regression parameter for each
server architecture type.

Machine Learning: MLNLV - LR [S_PM - based]
21 [79, 82] The model’s accuracy depends on the shrinking of the non-significant

variables. Moreover, the selection of high order polynomial variables
may over-fit the model making the prediction less accurate.

22 [79, 82] The model’s accuracy depends on the shrinking of the non-significant
variables. Moreover, the model has high probability of over-fitting due
to the use of exponential along with the polynomial function.

Machine Learning: MLNLV - LR [S_PC - based]
23 [80] The model while shrinking the non-significant variables to zero, does

not consider the integrated correlation between those variables and
their combined association on the power consumption.

Machine Learning: MLNLV - SVM [S_PM - based]
24 [79, 82] The model’s accuracy depends on the selection of the kernel and can

be computationally complex.
Machine Learning: MLNLV - DNN [S_PM - based]

26 [75] The model’s accuracy depends on the size of the training data set.
Moreover, the model training process is computationally complex
compared to regression based models.

Machine Learning: MLNLV - ANN [S_PMC - based]
29 [33] The model’s accuracy depends on the size of the training data set,

number of hidden layers and the activation function used. Moreover,
the model training process is computationally complex compared to
regression based models. It requires CPU temperature hardware indi-
cator.

Machine Learning: MLNLV - GMM [S_PMC - based]
30 [38] The accuracy of the model decreases and the computational complexity

increases with an increasing number of variables.

*

Single Variable Linear with Fixed Slope and Intercept (SVLF),
Machine Learning Linear with Variable Slope and Intercept (MLLV),
Single Variable Linear Regression (SVLR), Multi Variable Linear Regression (MVLR),
Single Variable Non-Linear with Fixed Slope and Intercept (SVNLF),
Machine Learning Non-Linear with Variable Slope and Intercept (MLNLV),
Single Variable Polynomial Regression (SVPR), Lasso Regression (LR), Support Vector Machine (SVM),
Deep Neural Network (DNN), Artificial Neural Network (ANN), Gaussian Mixture Model (GMM),
System_Performance_Metrics (S_PM), System_performance_Counters (S_PC),
and System_Performance_Metrics_Counters (S_PMC)
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Fig. 2. Workflow of power model development.

2.2 Evaluated Works and Software-based Power Model Development Workflow
The methodology for power model evaluation comprises of two stages; model development and
prediction. The model development stage generally known as training stage involves building the
model based on power consumption values and corresponding performance counters values for
some workload or representative benchmark. The power model development is specific to server
architecture requiring a particular model to be trained for each different type of architecture. Once
the model is developed, it is used to predict the power consumption of a server. This is known
as the prediction stage. Fig. 2 shows the workflow we use to develop the software-based power
models under study. The server under test is the server for which the power models are to be
developed. The workload stressing different user and system performance counters runs on the
server. While the workload is running, the values of the user and low-level system metrics are
recorded and written in a file. Simultaneously, the voltage and the current signal values of the
server are measured and sent to the power consumption calculator module. The values of the
counters and the power consumption are then sent to the data pre-processor module, where they
are synchronized and averaged to develop the training data set. This data set is then sent to the
power model builder module which builds the power model to be used.
A similar workflow is used by the works in the literature evaluating different power models.

However, the servers for model development, workload to stress the servers, and the power
measurement technique used by these works are different. For instance, [9, 20, 33, 34, 38, 61, 64,
75, 79, 80, 90, 104] used a single server for power model development, while [26, 27, 39, 41, 62, 67,
74, 76, 119, 123] used multiple heterogeneous servers. Moreover, [34, 79, 80, 90] used synthetic
workload to stress the server, while [9, 20, 26, 27, 33, 38, 39, 41, 62, 64, 67, 74–76, 104, 119, 123]
used different benchmarking applications and real-world workload traces. In addition, [76] used
DW-6090 power meter, [90] used a power analyzer, [123] used Chroma 66202 power meter, [67]
used IBM active energy manager, [61] used Voltcraft Energy Logger 4000, [26, 39, 75] used a AC
power meter, [9] used Yokogawa WT210 power meter, [20, 64] used WattsUp PRO ES power meter,
[34] used a watt meter, [79] used a smart power meter, [62, 119] used home-brew power meter, and
[33] used a plogg power meter to measure the power consumption of the server.

Table 2 summarizes different software-based power models evaluated in the literature. It shows
that these power models are evaluated under different experimental environment, using different
error formula, applications and power measurement techniques, which makes it difficult to compare
them. As shown in the table, the errors reported by different works evaluating a similar power
model are different. These discrepancies in the result are due to the use of different experimental
environment, setup, and evaluation formula. To date, there is no work comparing the performance
of the models examined in this study. Thus, in this work, we evaluate these models under a unified
experimental environment, power measurement technique and error formula. We compare the
performance on three different server architectures using a diverse set of applications.
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Table 2. Evaluated Works on Software-based Power Models.

Work Power
Model
Equa-
tion

Experimen-
tal Setup

Workload
used to
Stress the
Server

Power
Mea-
sure-
ment
Tech-
nique

Error
Formula

Error

[41] 1 Thousand
of hetero-
geneous
servers

Webmail,
Web-
search,
and
Mapre-
duce

- - -

[27] 1 Servers
from
SPECpower
2008 data-
base

SPECpower
2008 data-
base

- 1
N ×∑N

i=1
|Predicted−Actual |

Actual 25.7%

[41] 16 Thousand
of hetero-
geneous
servers

Webmail,
Web-
search,
and
Mapre-
duce

- - 1%

[76] 17 Thirteen
hetero-
geneous
servers

Streaming
media
workload
using
Windows
media load
simulator

DW-6090
power
meter

Actual−Predicted
N 6%

[90] 6 Single
server

Synthetic
workload
using
workload
generator

Power an-
alyzer

- 9%

[123] 6 Seven het-
erogeneous
servers

SPECpower
bench-
marking
applica-
tion

Chroma
66202
power
meter

√
(Actual−Predicted )2

N 12.95%
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[67] 8 Three het-
erogeneous
servers

TPC-W,
SPECpower,
Domino,
daxpy,
fma, and
HPL appli-
cations

IBM
active
manager

|Predicted−Actual |
Actual × 100% 5%

[61] 18 Single
server

- Voltcraft
Energy
Logger
4000

- 9%

[123] 18 Seven het-
erogeneous
servers

SPECpower
bench-
marking
applica-
tion

Chroma
66202
power
meter

√
(Actual−Predicted )2

N 7.984%

[123] 20 Seven het-
erogeneous
servers

SPECpower
bench-
marking
applica-
tion

Chroma
66202
power
meter

√
(Actual−Predicted )2

N 3.319%

[26] - Six hetero-
geneous
servers

Ibench,
Stress,
Sysbench,
Prime 95,
Linpack-
neon,
Pmbw,
STREAM,
fio, iperf3,
Cloud-
Suite,
and NAS
bench-
marks

AC power
meter

100
n

∑n
i=1

(Actual−Predicted
Actual 2.6-

5.7%
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[39] 9 Two het-
erogeneous
servers

SPECcpu
2000
integer,
SPEC-
cpu2000
floating
point,
SPECjbb
2000,
SPECweb
2005,
Streams
applica-
tion, and
matrix
multiplica-
tion

AC power
meter

1
N ×∑N

i=1
Predicted−Actual

Actual 4%

[104] 9 Four homo-
geneous
servers

Video
sharing
web appli-
cation

- - 3.91%

[9] 10 Single
server

scp, rsync,
ftp, bbcp,
and
gridftp
data
transfer
tools

yokogawa
WT210
power
meter

1
N (∑N

i=1
Predicted−Actual

Actual )100% 6%

[64] 11 Single
server

SPECcpu
2006, and
IOmeter

Power
meter
WattsUp
PRO ES
power
meter

|Predicted−Actual |
N 5%

[75] 11 Six homo-
geneous
servers

pi, su-
doku, sort,
random
writer,
and word
count
Hadoop
programs

AC power
meter

|Predicted−Actual |
Actual 4%
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[20] 12 Single
server

NAS-NPB,
Iozone,
Bonnie++,
BYTEMark,
Cachebench,
Dense
matrix
multiplica-
tion, and
Gcc bench-
mark
programs

WattsUp
PRO
power
meter

- 94% ac-
curacy

[34] 13 Single desk-
top

Synthetic
workload

Watt me-
ter

√
(Actual−Predicted )2

N 2.7%

[119] 14 Three het-
erogeneous
servers

Abinit,
NAMD,
HMMER,
MEncoder
and CPU
Burn ap-
plications,
and Intel
LINPACK,
C-ray and
Cavity
bench-
marks

Home-
brew
watt me-
ter based
around
the
chipset
ADE7763

√∑N
i=1(Actual−Predicted )2

N 1-4%

[62] 15 Four het-
erogeneous
HPC
servers

Abinit,
CPU Burn,
HMMER,
Namd,
MEncoder,
FFTE,
Make,
Mprime,
Open-
FOAM and
Tar appli-
cations,
and Cavity
and C-ray
bench-
marks

Home-
brew
device
based
around
the
chipset
ADE7763

1
N
∑N

i=1(Actual − Predicted)2 1-4%
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[82] 21 Single
server

* Data ac-
quisition
system
and
WattsUp
meter

1
N (∑N

i=1
Predicted−Actual

Actual ) -

[79] 21 Single
server

Synthetic
workload

Smart
power
meter

- 10%

[82] 22 Single
server

* Data ac-
quisition
system
and
WattsUp
meter

1
N (∑N

i=1
Predicted−Actual

Actual ) -

[79] 22 Single
server

Synthetic
workload

Smart
power
meter

- 10%

[80] 23 Single
server

Synthetic
workload

-
√

(Actual−Predicted )2
N 10%

[82] 24 Single
server

* Data ac-
quisition
system
and
WattsUp
meter

1
N (∑N

i=1
Predicted−Actual

Actual ) -

[79] 24 Single
server

Synthetic
workload

Smart
power
meter

- -

[74] 26 Two het-
erogeneous
servers

WC98,
and clark
web ap-
plication
traces

-
√∑(Actual−Predicted )2

N
Standarddeviat ion 1.03±0.13

[33] 29 RECS com-
pute box
having
eighteen
homo-
geneous
computer
modules

C0, CU,
ALU, FPU,
RAND,
L1, L2, L3
and RAM
micro
bench-
marks

Plogg
power
meter

100
N ×∑N

i=1 | Actual−PredictedActual | 1.83%
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[38] 30 Single
server

amm,
app, art,
cra, eon,
equ, fac,
fma, gap,
gcc, gzi,
mcf, mes,
per, swi,
two, vpr,
and wup
bench-
marks

- - 10%

* sleep, streamcluster, canneal, memcache, bodytrack, freqmine, x264, blackscholes, stressApp, LinuxBuild, namd, dedup,
zeusmp, Bonnie, mcf, sphinx3, povray, soplex, cpuload(S_PMC)

3 PERFORMANCE ANALYSIS
In this section, we analyze and compare the performance of the studied software-based power
models on three different classes of servers, using various tools and benchmarks. We evaluate their
performance using the standard error of estimation.

3.1 Experimental Environment
We use three heterogeneous servers from our Lab located at the College of Information Technology
of the United Arab Emirates University, to evaluate the performance of the studied models. The
servers’ specifications are listed in Table 3. We perform various experiments to generate the training,
validation and testing data sets. The power models are developed using the training data set and
are then validated using the validation data set. The models are then evaluated in terms of standard
error of estimation using the testing data set. Table 4 shows the list of tools used to generate the
training and validation data set. Table 5 shows the list of benchmarks and applications used to
generate the testing data set. We run these tools and applications on each server and measure the
values of different resource metrics and corresponding power consumption. To measure the value
of the metrics we use Linux perf utility [51] and collectd tool [6], and to measure the corresponding
power consumption values, Tektronix âĂŞ TDS2012B [110] 100 MHz with 1GS/s of sampling
(2-channel digital oscilloscope) was used. We connect the oscilloscope to a current probe [116] and
a high differential voltage probe [116] to measure the current and the voltage signals respectively.
The power consumption is then the product of the measured current and voltage signals. We also
use the servers from SPEC power [31] to evaluate the performance of the power models in order
to verify our evaluation on modern server architectures. We only evaluate single variable power
models considering CPU utilization as the independent variable for the SPEC power servers because
only the data for power consumption corresponding to CPU utilization is available on the SPEC
power website. We use two servers listed in the SPEC power results for quarter 1 of 2019, whose
specifications are listed in Table 6. The servers from the SPEC Power website belong to the same
family of servers as the ones we use in our experimental testbed, but with different architectures
and capabilities.

3.2 Experiments
The set of experiments performed on the servers to obtain the training, validation, and testing
data sets for the power model development and performance evaluation are discussed in this

ACM Comput. Surv.



22 Leila Ismail and Huned Materwala

Table 3. List of Servers Used in the Experiments.

Server 1 CELSIUS R940power 2 x Intel Xeon E5-2680v4 CPU (2.40 GHz, 14 cores), 8 x
32GB DDR4, 2 x HDD SAS 600GB, OS version Redhat Enterprise Linux Server
RHEL 7.4 âĂŞ 64-bit.

Server 2 Sun Fire Intel_Xeon CPU core of 2.80 GHz, Dual core, with 512 KB of cache and
4 GB of memory for each core, OS version CentOS 6.8(i686).

Server 3 Sun Fire X4100 with AMD_Operaton252 CPU of 2.59 GHz, dual CPU, single
core, with 1MB of cache and 2GB of memory for each core, OS version Red Hat
Enterprise Linux Server release 7.3 (Mapio).

Table 4. Tools Used to Generate the Training and Validation Data sets.

Tool Resource
Stressed

Description

CPU
Load
Gen-
erator
[45]

CPU CPU Load Generator is a script written in Python that allows generat-
ing a fixed CPU load for a finite user defined time duration. The script
takes in as input the desired CPU load, the duration of the experiment
and the CPU core on which the load must be generated.

Stress [5] Memory Stress is used to generate a configurable measure of CPU, memory
and disk load. We use Stress-1.0.4 to generate configurable stress on
memory. The inputs to the stress command line are the number of
vm workers, memory allocation size per vm worker and the duration
of the experiment.

Vdbench
[112]

Disk I/O
rate

Vdbench is used to generate configurable amount of disk I/O work-
loads on a system. We set the desired I/O rate using the curve param-
eter of the run definition file.

iperf3 [7,
87]

Network
I/O rate

Iperf3 is a tool for active measurement of the maximum available
bandwidth on IP networks. We use iperf3 between to generate a
configurable network I/O rate between the test server and a remote
host server.

section. The performance of the different user and system counters used by the studied power
models was measured in real-time using the Linux tools. We also measure the corresponding power
consumption values using a LabVIEW program. The values of the counters and power consumption
are written to a file every one second and are then averaged. We repeat all the experiments 5 times
and averaged the averages.
For all the models under study, except for throughput-based S_PM model, the experiments for

generating the training and validation data sets are performed by stressing the CPU, memory,
disk operations, and network transfers individually on each of the three servers. We stress the
CPU by generating a CPU load between 0% - 100% for 5 minutes each at random intervals, using
the CPU Load Generator tool. For multi-core servers, we generate the CPU load on all the cores
simultaneously. We use the Stress tool to populate the memory using random memory sizes for a
virtual machine (vm) worker, for 5 minutes each. To stress the disk I/O at configurable I/O rate, we
then use vdbench tool. We first find the maximum disk I/O rate of the server and then generate I/O
rates between 0% - 100% of the maximum I/O rate for 5 minutes each. We stress the network I/O
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Table 5. Applications and Benchmarks Used to Generate the Testing Data set.

Application/Benchmark Resource
Stressed

Description

Sysbench benchmark [10,
68]

CPU Sysbench benchmark is used to evaluate the OS pa-
rameters like CPU utilization, memory utilization,
and Disk I/O. We use the Sysbench to stress the
CPU, using the CPU workload [46]. The CPU work-
load calculates prime numbers between zero and a
specified number.

MEncoder application [8] CPU and
Memory

We used MEncoder 4.45, a video compressor appli-
cation included in the Mplayer project, to stress the
CPU and the memory. We use the MPEG-4 video
format [4], with 1920 x 1080 resolution, 18,356.7
kbps, 23 fps, and 24 bpp.

PARSEC benchmark -Black
Scholes Model (Portfolio
management) [18, 111]

CPU,
Memory
and Disk

The Black Scholes by Intel RMS benchmark cal-
culates the prices of European options’ portfolio
analytically using the partial differential equation
(PDE).

Data Mining - Ensemble
Clustering application [54]

CPU,
Memory
and Disk

We useWeka 3.8 [54] to perform k-means clustering
of the forest cover [43] data set consisting of Geo-
spatial descriptions of various forest’s types. The
data contains 581,000 instances, 7 classes, and 54
attributes.

PARSEC benchmark
-Streamcluster [18, 111]

CPU,
Memory,
Disk and
Network

Streamcluster is a part of the PARSEC 3.0 bench-
mark suite to solve the online clustering problem.
Stream clustering is memory intensive for low-
dimensional data and becomes CPU intensive as
the dimension increases.

Table 6. List of Servers from SPEC Power Used in the Experiments.

SPEC_Server 1 Dell PowerEdge R7425, AMD EPYC 7601 2.20 GHz, 32 core, 64 MB L3 cache,
16x8 GB of memory, 240 GB SATA SSD, and OS Microsoft Windows Server [29].

SPEC_Server 2 Lenovo Global Technology ThinkSystem SR150, Intel Xeon E-2176G, 6 core, 3.7
GHz, 12MB L3 cache, 2x16 GB of memory, 128 GB M.2 SSD, and OS Microsoft
Windows Server [30].

rate by specifying the desired network bandwidth between the test server and a remote desktop.
We measure the maximum available bandwidth for the server using iperf3 and then ping the remote
desktop with random bandwidth between 0% - 100% of the maximum bandwidth for 5 minutes
each.

For the throughput-based S_PM power model, we generate the training and validation data sets
as follows. We use different tools to mimic different resource-intensive applications. We measure the
maximum throughput that can be achieved by an application and run it with random throughput
varying between the minimum and maximum. We use the CPU load of Sysbench benchmark to
mimic a CPU- intensive application with throughput represented as the floating operations per
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second. For disk-intensive applications, we use vdbench tool with the throughput represented as
the number of disk reads/writes per second. For the network-intensive applications, we use iperf3
tool with the throughput represented as the number of data transferred/received per second. For
the evaluation of the power models based only on CPU utilization for the servers from SPEC power,
we used the SPEC power results of power consumption corresponding to different level to CPU
utilization for each of the SPEC power servers.
For all the models under study, the training and validating data sets set are selected randomly

using 70% and 30% of the generated experimental data set respectively.
To generate the testing data set, we run Sysbench for the CPU workload to calculate the prime

numbers up to 20000000 with the number of threads increasing randomly from 0 up to the total
number of threads of the server under test. In addition, we run the MEncoder application to
compress a video file of size 100MB. We repeat the process for video files of sizes 200MB-2GB,
with an increment of 100MB. Furthermore, we use the Black Scholes application to calculate the
prices of a 65,536 European options portfolio. We also use the ensemble clustering application to
perform k-means clustering of data sets with a different number of instances. We use 4 different
sizes of 7.38MB, 74.2MB, 746MB, and 941MB having 27900, 279000, 2790000, and 5580000 instances
respectively, form the UCI Forest data repository. Moreover, we run the Streamcluster application
from the PARSEC benchmark suite to perform online stream clustering for native input options
having 1,000,000 input points and 128 dimensions. The power models performance for the servers
from SPEC power is not evaluated as the testing data set using different benchmarking applications
for those servers can not be obtained as they are not part of our experimental testbed.
We use the R programming language [44] to develop the studied power models using the

generated training data set and to evaluate their performance using the validation and testing data
sets. The performance of the models is analyzed using standard error of estimation calculated using
Equation 31.

eest =

√∑n
i=1(Pi − P ′

i )2
n

(31)

Where P and P’ are the actual and predicted values of power consumption respectively and n is the
length of the testing data set.

3.3 Experimental Results Analysis
In this section, we discuss the results obtained by the works on software-based power models when
evaluated by those works under the same experimental environment and setup and compare them
with our results. We also analyze our experimental results and give insights and conclusions of
these evaluations. In particular, we reveal the reasons behind the performance of these models.

3.3.1 Analysis of the Evaluated Works on Software-based Power Models in the Literature

Table 7 shows the results for prediction errors of different power models obtained by the works in
the literature using a unified setup. [123] evaluated the SVLR model in Equation 6 and SVPR models
in Equation 18 and Equation 20 and reported an error of 12.95%, 7.98% and 3.32% respectively.
These results indicate that 3rd order SVPR model (Equation 20) outperforms the 2nd order SVPR
(Equation 18) and SVLR (Equation 6) models. [79] evaluated and compared the Equations 21, 22,
and 24 and showed that the SVM model in Equation 24 has the least error, while the model in
Equations 21 and 22 has almost the same error. The GMM model in Equation 30 was evaluated and
compared to the SVLR and MVLR models by [38]. The results showed that GMM has an error of
10%, compared to SVLR model in Equation 6 having an error of 50%. To our knowledge, there is
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Table 7. Results of Power Prediction Errors Obtained by the Works Comparing Models in the Literature

Work Power Model Equation Error

[123]
6 12.9%
18 7.9%
20 3.3%

[79]
21 10.0%
22 10.0%
24 <10.0%

[38] 6 50.0%
30 10.0%

no work which compares the software-based power models in the literature. In the sections that
follow, we compare and analyze these models using a unified experimental setup, workload, and
error calculation formula.

3.3.2 Analysis of our Experimental Results

In this section, we evaluate the performance of the power models under study for the generated
validating data sets and the testing data set. In particular, we compare the performance among the
CPU-based models, among the throughput-based models, and among the multi variable models for
the validating data sets. In addition, we compare the performance among all the models for the
testing data set.

3.3.2.1 Single Variable CPU-based Power Models for Validating Data Set

Figure 3 shows the standard error of estimation of the single variable CPU-based power models
for the validating data set for Server 1. It shows that the interpolation model has the least error of
estimation, followed by the models based on SVPR, SVLR, SVNLF, and SVLF. This is thanks to the
piece-wise linearization between every two data points of the training data set resulting in a better
prediction.

Comparing the performance of SVPR with SVLR models, the error of estimation with the SVPR
models is less, which is also confirmed by the evaluation results in the literature (Table 7). This is
because, for a server, the power consumption profile corresponding to the CPU utilization values
fits well to a curve rather than a linear line. Among the SVPR models, the 3rd order has the least
error compared to the 2nd and rth order. This is because the power consumption behavior of the
server is an increasing function at the endpoints which can be more accurately represented using
a 3rd-degree polynomial curve with the end-points moving in the same direction. Whereas, in a
2nd-degree polynomial curve, the endpoints move in the opposite direction resulting in a higher
error.
The error of SVLF and SVNLF power models is more compared to that of SVLR models (Figure

3). This is because the SVLF and SVNLF are based only on the endpoint power consumption values,
PMAX and PMIN , to construct a line where all the possible predicted values will lie. Therefore,
they do not consider the implications of other power consumption data between the endpoints
for predictions. However, the SVLR models compute a linear regression line to best fit the data
distribution while minimizing the sum of the squares of the vertical regression deviations. For the
SVLR, the model with the fixed intercept (PMIN ) has a higher error compared to the model with
dynamic intercept. This is because there is a sudden change of slope in the power consumption
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Fig. 3. Error of estimation of single variable CPU-based power models for validation data set.

trend for the CPU utilization value at 0% and at values greater than 1%. This change is not captured
by the regression model having fixed intercept, consequently having more prediction error.

Comparing the performance of SVLF with SVNLF power models, the SVLF has more error. This
is because SVLF models do not capture slight non-linearity of the power data distribution over the
range of CPU utilization values. Consequently, the straight line computed by the SVLF models for
predictions has a high value of offset compared to the SVNLF models. The SVLF model assuming
that PMIN is 70% of PMAX has the maximum error among all the single variable power models. The
rationale behind that is this assumption, which does not hold true for each class of the server. The
higher the deviation from the assumption, the higher will be the error.

ACM Comput. Surv.



Computing Server Power Modeling in a Data Center: Survey, Taxonomy and Performance Evaluation 27

Fig. 4. Error of estimation of single variable CPU-based power models for SPEC power data set.

Figure 4 shows the error of estimation of the single variable CPU-based power models for the
SPEC power servers. The performance of the models remains the same as that of the servers used
in our experimental testbed. However, the performance of the SVLR is better than that of SVPR
models using the SPEC power servers. This is because the power consumption profile is linear with
the CPU utilization for SPEC power servers while for our servers the power profile fits better to
polynomial curve than a linear line. This indicates that the performance relative performances of
SVLR and SVPR depend on the server power profile. The performance of the remaining models
which are CPU-based is the same on SPEC Power and our experimental testbed (Figures 3 and 4).
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Fig. 5. Error of estimation of single variable throughput-based power models for validation data set.

3.3.2.2 Single Variable Throughput-based Power Models for Validating Data Set

Figure 5 shows the error of estimation for the throughput-based powermodels when evaluated using
the validation data set generated by running CPU, memory and disk-intensive applications with
varying throughput. It shows that for all application types the error of estimation of SVLF is greater
than that of the SVLR model. This is because SVLF models only consider the power consumption
values of the endpoints CPU utilization and do not take into consideration the spatial distribution
and behavior of the power data. The SVLR model based on throughput also outperforms the models
based only on CPU utilization, except the interpolation model. This is because the throughput
based model considers the impact of each underlying resource of the server environment that
contributes to the power consumption.

3.3.2.3 Multi Variable Power Models for Validating Data Set

Our results (Figure 6) for the standard error of estimation of multi variable power models for the
validating data set for Server 1 shows that the SVM model based on CPU and memory utilization
has the least error of estimation compared to other evaluated multi variable power models. This is
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because of the server’s non-linear power profile and cross-dependency between the variables. SVM
considers the variable dependency and transforms the non-linear data into a high dimensional
feature space acknowledging the presence of non-linearity and gives precise predictions compared
to other multi variable linear models where the variables are assumed to be independent. The
non-linear polynomial and polynomial+exponential power models with lasso have almost similar
performance with the second least error after SVM. These models consider the quadratic and cubic
functions of the CPU and memory utilization values resulting in a regression hyperplane that fits
close to the actual values. Consequently, these models have less error compared to the models
considering only the linear functions of resource utilization.
The error of estimation of DNN model is less compared to that of the power models based on

GMM and MVLR models. This is thanks to the use of recursive autoencoder in the neural network
power model. The recursive autoencoder model generates an encoder output as a function of the
current data point and previous encoder output. Consequently, the recursive autoencoder will
generate a dynamically varying prediction line as a time series minimizing the prediction offset. The
better performance of GMM compared to the MVLR models (also confirmed by the evaluation in the
literature as stated in Table 7) is because that GMM considers the interaction of different variables
resulting in various levels of power consumption instead of having a single linear hyperplane
representing the power.

Comparing the performance of different MVLRmodels, the power models based on CPU, memory
and disk has less error compared to the models including network and cache in addition (Figure
6). This is because the inclusion of variables that are not significant for power consumption will
over-fit the regression model causing a high offset between the fitted and the actual values. The
model including the cache in addition to CPU, disk and memory has less error compared to the
network inclusive model. This is because the cache transaction is reflected by the utilization of
memory contributing to the power consumption and thus yielding accurate predictions than the
model including network instead of cache. The error of MVLR model with fixed intercept is more
compared to the MVLR models with dynamic intercept having at most 4 independent variables.
The rationale behind this is the sudden change of slope in the power consumption trend for an idle
and utilized server, which is not modeled when using a fixed intercept. The performance of the
throughput-based models (Figure 5) is better than the MVLR models because the MVLR models do
not capture all the underlying performance counters that contribute to the power which is however
captured by the application throughput.

Figure 6 shows that the MVLR model with 9 independent variables has the second-highest error
and the LR model with 30 variables has the highest error among all the evaluated models. This
is because the model with 9 variables includes context switch and interrupt requests, which do
not contribute to the power consumption majorly. The worst performance of the LR model with
30 variables is because instead of considering the CPU utilization, the model takes 28 different
low-level performance counters contributing to CPU utilization, each of them contributes to the
power consumption. The lasso regression only selects some significant power contributors while
shrinking the remaining. Consequently, the model leads to a high prediction error as the relationship
between the rejected metrics and the power consumption is not modeled.

In summary, interpolation model has the least error of estimation for the single variable power
models when evaluated using the validation data set, while the model assuming the idle power to
be 70% of the server’s peak power has the maximum error of estimation. For the multi variable
power models, SVM has the best performance with least error, while the lasso regression model
with 30 variables has the maximum error of estimation. The errors of estimation for interpolation,
a model assuming idle power as 70% of peak power, SVM and lasso regression with 30 variables are
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Fig. 6. Error of estimation of multi Variable power models for validation data set.

6.44, 37.85, 4.98 and 48.98 respectively. Our experiments show that the relative performance of the
models remains the same for servers 2 and 3 used in the experimental setup.
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3.3.2.4 Software-based Power Models for Testing Data Set

Figure 7 shows the performance of all the software-based power models when evaluated for the
testing data set, i.e., real applications. For the CPU-intensive Sysbench application, it is expected
that the single variable power models considering CPU utilization should perform better than the
multi variable models. Our results (Figure 7) show that the interpolation model has the least error
of estimation compared to the other models because of its piece-wise linearization approach as
discussed previously. The SVM, polynomial with lasso and polynomial+exponential with lasso
models still outperforms other models in terms of error of estimation. This is because of the
acknowledgment of non-linearity by the SVM model and the inclusion of quadratic and cubic
functions by the polynomial and polynomial+exponential models. Comparing the performance
of MVLR models having at most 4 independent variables with SVLF and SVNLF models, the non-
regression models considering only the power consumption values at the end points have more
error of estimation. The LR model with 30 variables has the worst performance with the maximum
error of estimation compared to other evaluated models.
Regarding the CPU and memory-intensive application MEncoder, the performance of multi

variable models is better than that of the single variable models. This is thanks to the inclusion
of memory utilization while modeling the power consumption by the multi variable models. For
the MEncoder application, SVM model has the least error while the lasso regression model with
30 variables has the maximum error of estimation. Figure 7 shows that for CPU, memory and
disk-intensive K-means application, the overall performance of all the models remains the same
except the relative performance of MVLR model with CPU, memory and disk, and model with
CPU, memory, disk and cache. It shows that the model including the cache has less error because
K-means application generates cache references contributing to power consumption considered
by the power model, thus leading to more accurate predicted values. For the portfolio application
with more cache transactions, the multi variable regression model with cache outperforms the
polynomial with lasso and polynomial+exponential with lasso models, with SVM having the least
error while the lasso regression model with 30 variables having the maximum error.

Comparing the performance of the MVLRmodels with at most 4 independent variables, the model
that includes network utilization has the least error of estimation for the Streamcluster application.
This is because the application performs online clustering utilizing the network contributing to a
small amount of power consumption (Figure 8). Consequently, the model with network utilization
in addition to CPU, memory and disk models the relationship between resource utilization and
power consumption more precisely, leading to less error. The overall performance of other models
still remains the same for the Streamcluster application.

The error of estimation for the power models based on CPU utilization is higher than the multi
variable models and application’s throughput-based models. This is because the correlation between
the power and the performance counters other than CPU is not considered in the models based
only on CPU utilization. Figure 8 shows the power consumed by server 1 with increasing values of
CPU, memory, disk and network utilization. It shows that the power consumption of the server
is dominated by CPU utilization. It shows that at 100% CPU load the server consumes 302W of
power. However, the memory consumes 200W independent of the memory load. This consumption
is higher the server power consumption at idle state. The increase in power consumption with
disk and network utilization is not significant. The maximum power consumption for 100% disk
utilization is 173W and with 100% network utilization is 178W. Consequently, the models not
considering memory utilization have a high error of estimation compared to the ones considering
the memory.
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Fig. 7. Error of estimation of software-based power models using testing data set for different applications.

The results obtained in our experiments can not be compared with that obtained in the past due
to discrepancies in the experimental setup, environment, and workloads. However, we compare
the relative performance of the models that are evaluated under the same setup in the past with
the results from our experiments. Similar, to evaluation result by [123] the relative performance of
the models in Equations 6, 18, and20 remains the same in our results. Equation 20 has the least
error of estimation compared to Equations 6 and 18. The relative performance of Equations 21, 22
and 24 reported by [79] is also confirmed in our experimental results with SVM model (Equation
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Fig. 8. Power consumption (W) of server 1 for increasing utilization of CPU, memory, disk and network.

24) having the least error of estimation. According to the results obtained by [38], GMM model
(Equation 30) has least error compared to the SVLR and MVLR models. This is also confirmed in our
results. The results of the works evaluating single power models in the past can not be compared
with the results in the literature and with our results. This is due to the use of different experimental
setup, environment, power measuring technique, error calculation formula, and workloads. Thus in
this paper, we evaluated the software-based power models in a unified setup to have a qualitative
comparison between them.

In summary for the Sysbench application, interpolation has the least error of 2.60, while the lasso
regression model with 30 variables has the maximum error of 68.98. For the MEncoder, K-means,
portfolio and Streamcluster applications, the SVM has the least error of 1.78, 3.66, 2.70, and 4.02
respectively, while the lasso regression model with 30 variables has the maximum error of 43.48,
36.60, 39.11, and 67.23 respectively. Our experiments reveal that the relative performance of the
models remains the same for servers 2 and 3.

4 RELATEDWORKS
In the last decade, there have been many research efforts both by the academic and the industrial
researchers aimed at reducing the computing infrastructure’s energy consumption from the circuit
level to the data center level. Power consumption modeling at different levels in a data center
has then been proposed in the past for energy efficient designing and optimization, to curb the
increasing energy consumption. Several works have proposed power models to be used either for
simulation as a tool in designing energy-efficient data centers [36, 39, 41, 57, 61, 73, 88, 90, 93], or
for server-level optimization [9, 12, 14, 22, 35, 36, 39, 41, 58, 72, 73, 78, 88, 90, 92, 95, 101, 122]. The
power models can be classified as: hardware-based, using variables such as server fan speed, voltage,
current, capacitor, motherboard components, and resistance for modeling [40, 55, 59, 85, 99, 102, 120]
and software-based, using variables such as utilization of CPU, memory, disk, network, throughput,
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interrupts, cache transactions and disk file system formodeling [9, 11, 12, 14–17, 19, 20, 22, 25–28, 33–
35, 38, 39, 41, 42, 47, 48, 53, 56–58, 61–65, 67, 69, 72, 74–76, 80, 90, 92–95, 101, 103, 104, 107–109, 115,
117, 119, 122, 123]. In this paper, we focused on software-based computing server’s power models.
These models include modeling based on different linear [9, 11, 12, 14–17, 20, 22, 25, 27, 28, 34, 35,
39, 41, 42, 47, 48, 56–58, 62–65, 67, 69, 72, 75, 90, 92–95, 101, 103, 104, 109, 115, 117, 119, 122, 123]
and non-linear [26, 33, 38, 41, 53, 61, 74, 76, 79, 80, 82, 92, 107, 108, 123].
Despite the increasing interest in the energy consumption issue of the data centers, little work

has been done to systematically analyze and compare the performance of different software-
based power consumption models. These models in the literature are evaluated under different
environment, experimental setup and analyzed using variants of formula to calculate the error.
To date, there have been relatively very few surveys conducted for server level software-based
power consumption modeling. Rivoire et al. proposed a power consumption model for servers and
compared its performance with four other power models in a unified setup using a diverse set of
applications [39, 97]. However, a key limitation of this work is that it fails to be comprehensive
and only compares power models proposed before 2008. Möbius et al. provided a comprehensive
survey of different power models for predicting power or single-core or multi-core processors,
virtual machines, and entire server [86]. In addition, the work extracted the factors affecting the
estimation error of the power models based on the literature review. Dayarathna et al. in the year
2016, conducted a survey of different energy consumption modeling techniques covering more
than 200 models [37]. Though providing a detail literature review of different power models, the
surveys [37, 86] lacks a comparative performance evaluation of the studied models. Lin et al. in
the year 2018, reported on the performance of different power models for disk, CPU and memory
individually in a cloud system [77]. However, the comparison does not involve the models for the
overall server power consumption. In this work, we conducted the evaluation of software-based
power models in a unified setup.

5 Conclusion
The surging data center energy consumption with the rapid popularity of cloud services, big data
analysis and IoT has led to crucial economic and environmental issues. An increasing amount
of research on power optimization for energy efficient designing and resource management has
thus gained major attention in recent years. Power modeling and prediction at different levels of
data center plays a vital role in this context. Many works on power modeling have been proposed
in the literature aiming towards energy efficient computing. Those models were evaluated using
different experimental setup, benchmarking applications, power measurement technique and
error calculation formula, which makes it difficult to compare their relative performance. To our
knowledge, this is the first work presenting a survey and comparative analysis of these models in a
unified setup.
In this study, we present taxonomy and comparative evaluation of state-of-the-art software-

based server power consumption models under a unified experimental setup. For that purpose,
we perform a series of experiments on three different server architectures. The evaluation uses
nine different tools and benchmarking applications having diverse resource utilization, for model
development and evaluation.
Our experimental results show that among the single variable power models, interpolation

has the least error while among the multi variable ones, SVM power model has the least error of
estimation. Comparing the overall performance for the different applications, the interpolation
model gives the least error for CPU-intensive application, while SVM model gives the least error
for CPU+memory, CPU+memory+disk, and CPU+memory+disk+network-intensive applications.
The lasso regression with 30 variables performs the worst with a maximum error of estimation for
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all the studied application types. Our experiments reveal that the relative performance of these
models remains on different server architectures.

When developing/using power consumption models in a computing environment, the following
requirements should be considered.

(1) Linear versus non-linear models: The accuracy of the linear (regression) models mainly depends
on the selection of features significantly related to power consumption which requires domain
knowledge. Moreover, linear models assume that the selected features have no correlation,
which might not be the case. On the other hand, the non-linear models such as SVM can
capture the correlation between the features which results in less error of estimation.

(2) CPU utilization dominance: Most often the server’s power is represented as a function of
its CPU utilization, considering CPU to be dominant power consumer. For the applications
that are not CPU-intensive, this assumption breaks down. It is advisable to consider at least
memory utilization as it is the second most power consuming resource after CPU. Memory
utilization refers to accessing the Dynamic Random-Access Memory (DRAM) for requests
which are not served by the three levels of cache (L1, L2 and L3). The power consumption is
directly related to the DRAM access through its controller. However, when the memory used
by an application is distributed across multiple memory controllers for better throughput, the
DRAM accesses through controllers will increase. This may lead to more power consumption
as the number of accessed memory controllers increases. Consequently, the impact of memory
controllers should be considered in power models.

(3) Server’s idle power: The idle power varies with the server architecture and assuming it to 70%
of its peak power, by one of the power models under study, may lead to drastically misleading
predictions. The more the server is energy efficient, the less is its idle power compared to
the peak power. But, an energy-aware scheduler might avoid placing the task on the energy
efficient server predicting its energy consumption based on the assumption of idle power to
be 70% of its peak.

(4) Kernel Function: The selection of the kernel for the SVM model should be done efficiently to
yield most accurate results with least complexity. The kernel function selection is dependent
on the behavior of the training data set.

(5) Quadratic and cubic utilization functions: Combinations of linear, quadratic and cubic functions
of different performance counters, selected using different variable selection models should
be first used to select the variables representing the power consumption with high correlation.
The selected variables should be then used for model development.

(6) Throughput versus performance counters: The throughput-based power model has a better
performance than the MVLR models. However, the throughput-based requires calibrations of
the regression coefficients for every application with a different throughput unit, for each
server architecture type. The MVLR models can be trained periodically for each server type.

For Future research work, we propose investigations in the following directions. First, we would
like to investigate a multi-objective scheduling algorithm in conjunction with an energy model
to optimize the energy consumption, performance and the quality of services in the data centers.
Second, it would be valuable to compare the performance of software-based and hardware-based
power models used in the literature of power modeling.

ACM Comput. Surv.



36 Leila Ismail and Huned Materwala

Acknowledgments
This work is supported by the Emirates Center for Energy and Environment Research of the United
Arab Emirates University under Grant 31R101. The authors would like to thank the anonymous re-
viewers for their valuable comments which helped us improve the content, quality, and presentation
of this paper.

References
[1] [n.d.]. Branch (computer science) - Wikipedia. https://en.wikipedia.org/wiki/Branch_(computer_science). (Accessed

on 11/17/2019).
[2] [n.d.]. CPU cache - Wikipedia. https://en.wikipedia.org/wiki/CPU_cache. (Accessed on 11/17/2019).
[3] [n.d.]. Interrupt - Wikipedia. https://en.wikipedia.org/wiki/Interrupt. (Accessed on 11/17/2019).
[4] 2009. What is H.264 | H264info.com. Retrieved April 25, 2019 from http://www.h264info.com/h264.htmlis
[5] 2014. Stress. Retrieved April 25, 2019 from https://people.seas.harvard.edu/~apw/stress/
[6] 2019. Collectd âĂŞ The system statistics collection daemon. Retrieved April 25, 2019 from https://collectd.org/
[7] 2019. iPerf. Retrieved April 25, 2019 from https://iperf.fr/iperf-download.php
[8] 2019. MPlayer - The Movie Player. Retrieved April 25, 2019 from http://www.mplayerhq.hu/design7/news.html
[9] Ismail Alan, Engin Arslan, and Tevfik Kosar. 2014. Energy-aware data transfer tuning. Proceedings - 14th IEEE/ACM

International Symposium on Cluster, Cloud, and Grid Computing, CCGrid 2014 (2014), 626–634. https://doi.org/10.
1109/CCGrid.2014.117

[10] Kopytov Alexey. 2019. GitHub - akopytov/sysbench: Scriptable database and system performance benchmark. Retrieved
April 25, 2019 from https://github.com/akopytov/sysbench

[11] Ehsan Arianyan, Hassan Taheri, and Saeed Sharifian. 2015. Novel energy and SLA efficient resource management
heuristics for consolidation of virtual machines in cloud data centers. Computers and Electrical Engineering 47 (2015),
222–240. https://doi.org/10.1016/j.compeleceng.2015.05.006

[12] Zahra Bagheri and Kamran Zamanifar. 2014. Enhancing energy efficiency in resource allocation for real-time cloud
services. 2014 7th International Symposium on Telecommunications, IST 2014 (2014), 701–706. https://doi.org/10.1109/
ISTEL.2014.7000793

[13] Jenny A Baglivo. 2005. Mathematica laboratories for mathematical statistics: Emphasizing simulation and computer
intensive methods. Vol. 14. Siam.

[14] Anton Beloglazov, Jemal Abawajy, and Rajkumar Buyya. 2012. Energy-aware resource allocation heuristics for
efficient management of data centers for Cloud computing. Future Generation Computer Systems 28, 5 (2012), 755–768.
https://doi.org/10.1016/j.future.2011.04.017

[15] Anton Beloglazov and Rajkumar Buyya. 2012. Optimal online deterministic algorithms and adaptive heuristics for
energy and performance efficient dynamic consolidation of virtual machines in Cloud data centers. Concurrency
Computation Practice and Experience 24, 13 (2012), 1397–1420. https://doi.org/10.1002/cpe.1867 arXiv:1006.0308

[16] J.Ll. Berral, Í. Goiri, R. Nou, F. Julià, J. Guitart, R. Gavaldà, and J. Torres. 2010. Towards energy-aware scheduling in
data centers using machine learning. In 1st International Conference on Energy-Efficient Computing and Networking,
Vol. 2. 215–224. https://doi.org/10.1145/1791314.1791349

[17] J L Berral, R Gavalda, and J Torres. 2011. Adaptive Scheduling on Power-Aware Managed Data-Centers Using Machine
Learning. In 2011 IEEE/ACM 12th International Conference on Grid Computing. 66–73. https://doi.org/10.1109/Grid.
2011.18

[18] Christian Bienia. 2011. Benchmarking Modern Multiprocessors. Ph.D. Dissertation.
[19] William Lloyd Bircher and Lizy K John. 2011. Complete system power estimation using processor performance events.

IEEE Trans. Comput. 61, 4 (2011), 563–577.
[20] Ata E Husain Bohra and Vipin Chaudhary. 2010. VMeter Power modelling for virtualized clouds.pdf. (2010), 1–8.
[21] Pat Bohrer, Elmootazbellah N Elnozahy, Tom Keller, Michael Kistler, Charles Lefurgy, Chandler McDowell, and Ram

Rajamony. 2002. The Case for Power Management in Web Servers. Power Aware Computing (2002), 261–289.
[22] Rajkumar Buyya, Anton Beloglazov, and Jemal Abawajy. 2010. Energy-Efficient Management of Data Center Resources

for Cloud Computing: A Vision, Architectural Elements, and Open Challenges. 2010 International Conference on
Parallel and Distributed Processing Techniques and Applications Vm (2010), 1–12. https://doi.org/10.1002/cpe.1867
arXiv:1006.0308

[23] Rajkumar Buyya and Amir Vahid Dastjerdi. 2016. Internet of Things: Principles and Paradigms (1st ed.). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

[24] Rajkumar Buyya, Christian Vecchiola, and S Thamarai Selvi. 2013. Mastering Cloud Computing: Foundations and
Applications Programming, 1st edition. 469 pages. https://doi.org/10.1016/B978-0-12-411454-8.00001-2

ACM Comput. Surv.

https://en.wikipedia.org/wiki/Branch_(computer_science)
https://en.wikipedia.org/wiki/CPU_cache
https://en.wikipedia.org/wiki/Interrupt
http://www.h264info.com/h264.htmlis
https://people.seas.harvard.edu/~apw/stress/
https://collectd.org/
https://iperf.fr/iperf-download.php
http://www.mplayerhq.hu/design7/news.html
https://doi.org/10.1109/CCGrid.2014.117
https://doi.org/10.1109/CCGrid.2014.117
https://github.com/akopytov/sysbench
https://doi.org/10.1016/j.compeleceng.2015.05.006
https://doi.org/10.1109/ISTEL.2014.7000793
https://doi.org/10.1109/ISTEL.2014.7000793
https://doi.org/10.1016/j.future.2011.04.017
https://doi.org/10.1002/cpe.1867
http://arxiv.org/abs/1006.0308
https://doi.org/10.1145/1791314.1791349
https://doi.org/10.1109/Grid.2011.18
https://doi.org/10.1109/Grid.2011.18
https://doi.org/10.1002/cpe.1867
http://arxiv.org/abs/1006.0308
https://doi.org/10.1016/B978-0-12-411454-8.00001-2


Computing Server Power Modeling in a Data Center: Survey, Taxonomy and Performance Evaluation 37

[25] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, Cesar A. F. De Rose, and Rajkumar Buyya. 2011. CloudSim: A
Toolkit for Modeling and Simulation of Cloud Computing Environments and Evaluation of Resource Provisioning
Algorithms. Softw. Pract. Exper. 41, 1 (Jan. 2011), 23–50. https://doi.org/10.1002/spe.995

[26] Mauro Canuto, Raimon Bosch, Mario Macias, and Jordi Guitart. 2016. A methodology for full-system power modeling
in heterogeneous data centers. In Proceedings of the 9th International Conference on Utility and Cloud Computing.
ACM, 20–29.

[27] Howard Cheung, Shengwei Wang, Chaoqun Zhuang, and Jiefan Gu. 2018. A simplified power consumption model of
information technology (IT) equipment in data centers for energy system real-time dynamic simulation. Applied
Energy 222 (2018), 329 – 342. https://doi.org/10.1016/j.apenergy.2018.03.138

[28] Mohammed Rashid Chowdhury, Mohammad Raihan Mahmud, and Rashedur M. Rahman. 2015. Implementation and
performance analysis of various VM placement strategies in CloudSim. Journal of Cloud Computing 4, 1 (2015), 1–21.
https://doi.org/10.1186/s13677-015-0045-5

[29] Standard Performance Evaluation Corporation. 2019. Dell Inc. PowerEdge R7425 (AMD EPYC 7601 2.20 GHz). Retrieved
April 25, 2019 from https://www.spec.org/power_ssj2008/results/res2019q1/power_ssj2008-20190212-00876.html

[30] Standard Performance Evaluation Corporation. 2019. Lenovo Global Technology ThinkSystem SR150. Retrieved April
25, 2019 from https://www.spec.org/power_ssj2008/results/res2019q1/power_ssj2008-20181225-00874.html

[31] Standard Performance Evaluation Corporation. 2019. SPECpower. Retrieved April 25, 2019 from https://www.spec.
org/power_ssj2008/results/

[32] Natural Resources Defense Counci. 2015. America’s Data Centers Consuming and Wasting Growing Amounts of
Energy. Retrieved April 25, 2019 from https://www.nrdc.org/resources/americas-data-centers-consuming-and-
wasting-growing-amounts-energy

[33] Leandro Fontoura Cupertino, Georges Da Costa, and Jean-Marc Pierson. 2015. Towards a generic power estimator.
Computer Science-Research and Development 30, 2 (2015), 145–153.

[34] Georges Da Costa and Helmut Hlavacs. 2010. Methodology of measurement for energy consumption of applications.
Proceedings - IEEE/ACM International Workshop on Grid Computing (2010), 290–297. https://doi.org/10.1109/GRID.
2010.5697987

[35] Xiangming Dai, Jason Min Wang, and Brahim Bensaou. 2016. Energy-Efficient Virtual Machines Scheduling in
Multi-Tenant Data Centers. IEEE Transactions on Cloud Computing 4, 2 (2016), 210–221. https://doi.org/10.1109/TCC.
2015.2481401

[36] John D. Davis, Suzanne Rivoire, Moises Goldszmidt, and Ehsan K. Ardestani. 2012. CHAOS: Composable Highly
Accurate OS-based power models. Proceedings - 2012 IEEE International Symposium on Workload Characterization,
IISWC 2012 (2012), 153–163. https://doi.org/10.1109/IISWC.2012.6402920

[37] M Dayarathna, Y Wen, and R Fan. 2016. Data Center Energy Consumption Modeling: A Survey. IEEE Communications
Surveys & Tutorials 18, 1 (2016), 732–794. https://doi.org/10.1109/COMST.2015.2481183

[38] Gaurav Dhiman, Kresimir Mihic, and Tajana Rosing. 2010. A system for online power prediction in virtualized
environments using gaussian mixture models. 3 (2010), 807–812. http://files/125/dhiman2010.pdf

[39] Dimitris Economou, Suzanne Rivoire, Christos Kozyrakis, and Partha Ranganathan. 2006. Full-System Power Analysis
and Modeling for Server Environments. Workshop on Modeling, Benchmarking and Simulation (MoBS) 3 (2006),
807–812.

[40] ElmootazbellahN Elnozahy,Michael Kistler, and Ramakrishnan Rajamony. 2003. Energy-efficient server clusters. Power
Aware Computing Systems: Second International Workshop (2003), 179–197. https://doi.org/10.1017/CBO9781107415324.
004 arXiv:arXiv:1011.1669v3

[41] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. 2007. Power provisioning for a warehouse-sized
computer. ACM SIGARCH Computer Architecture News 35, 2 (2007), 13. https://doi.org/10.1145/1273440.1250665
arXiv:arXiv:1006.1401v2

[42] Fahimeh Farahnakian, Pasi Liljeberg, and Juha Plosila. 2014. Energy-Efficient Virtual Machines Consolidation in Cloud
Data Centers Using Reinforcement Learning. 2014 22nd Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing (2014), 500–507. https://doi.org/10.1109/PDP.2014.109

[43] Center for Machine Learning and Intelligent Systems. 2019. UCI Machine Learning Repository. https://archive.ics.uci.
edu/ml/index.php (Accessed on 10/16/2018).

[44] The R foundation. 2019. R: The R Project for Statistical Computing. Retrieved April 25, 2019 from https://www.r-
project.org/

[45] Carlucci Gaetano. 2018. CPULoadGenerator. Retrieved April 25, 2019 from https://github.com/GaetanoCarlucci/
CPULoadGenerator

[46] Inc. Gentoo Foundation. 2018. Sysbench. Retrieved April 25, 2019 from https://wiki.gentoo.org/wiki/Sysbench
[47] Daniel Gmach, Jerry Rolia, Ludmila Cherkasova, and Alfons Kemper. 2009. Resource pool management: Reactive versus

proactive or let’s be friends. Computer Networks 53, 17 (2009), 2905–2922. https://doi.org/10.1016/j.comnet.2009.08.011

ACM Comput. Surv.

https://doi.org/10.1002/spe.995
https://doi.org/10.1016/j.apenergy.2018.03.138
https://doi.org/10.1186/s13677-015-0045-5
https://www.spec.org/power_ssj2008/results/res2019q1/power_ssj2008-20190212-00876.html
https://www.spec.org/power_ssj2008/results/res2019q1/power_ssj2008-20181225-00874.html
https://www.spec.org/power_ssj2008/results/
https://www.spec.org/power_ssj2008/results/
https://www.nrdc.org/resources/americas-data-centers-consuming-and-wasting-growing-amounts-energy
https://www.nrdc.org/resources/americas-data-centers-consuming-and-wasting-growing-amounts-energy
https://doi.org/10.1109/GRID.2010.5697987
https://doi.org/10.1109/GRID.2010.5697987
https://doi.org/10.1109/TCC.2015.2481401
https://doi.org/10.1109/TCC.2015.2481401
https://doi.org/10.1109/IISWC.2012.6402920
https://doi.org/10.1109/COMST.2015.2481183
http://files/125/dhiman2010.pdf
https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1017/CBO9781107415324.004
http://arxiv.org/abs/arXiv:1011.1669v3
https://doi.org/10.1145/1273440.1250665
http://arxiv.org/abs/arXiv:1006.1401v2
https://doi.org/10.1109/PDP.2014.109
https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
https://www.r-project.org/
https://www.r-project.org/
https://github.com/GaetanoCarlucci/CPULoadGenerator
https://github.com/GaetanoCarlucci/CPULoadGenerator
https://wiki.gentoo.org/wiki/Sysbench
https://doi.org/10.1016/j.comnet.2009.08.011


38 Leila Ismail and Huned Materwala

[48] Chen Gong, He Wenbo, Liu Jie, Nath Suman, Rigas Leonidas, Xiao Lin, and Zhao Feng. 2008. Energy-Aware Server
Provisioning and Load Dispatching for Connection-Intensive Internet Services. USENIX Symposium on Networked
Systems Design and Implementation (NSDI) (2008), 337–350. https://doi.org/10.1109/INFCOM.2012.6195719

[49] Albert Greenberg, James Hamilton, David A Maltz, and Parveen Patel. 2008. The cost of a cloud: research problems
in data center networks. ACM SIGCOMM computer communication review 39, 1 (2008), 68–73.

[50] Steve Greenberg, Evan Mills, Bill Tschudi, and Lawrence Berkeley. 2006. Best Practices for Data Centers : Lessons
Learned from Benchmarking 22 Data Centers T. Aceee SUMMER, Lbnl (2006), 76–87. https://doi.org/10.1016/j.energy.
2012.04.037

[51] Brendan Gregg. 2008. Linux perf Examples. Retrieved April 25, 2019 from http://www.brendangregg.com/perf.html
[52] The Green Grid. 2011. The ROI of Cooling System Energy Efficiency Upgrades - Case Study. Technical Report. 1–42

pages.
[53] Marco Guazzone, Cosimo Anglano, and Massimo Canonico. 2012. Exploiting VM Migration for the Automated Power

and Performance Management of Green Cloud Computing Systems. In E2DC 2012: Energy Efficient Data Centers.
81–92.

[54] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H Witten. 2009. The WEKA
data mining software: an update. ACM SIGKDD explorations newsletter 11, 1 (2009), 10–18.

[55] Sang Woo Ham, Min Hwi Kim, Byung Nam Choi, and Jae Weon Jeong. 2015. Simplified server model to simulate data
center cooling energy consumption. Energy and Buildings 86 (2015), 328–339. https://doi.org/10.1016/j.enbuild.2014.
10.058

[56] Guangjie Han, Wenhui Que, Gangyong Jia, and Lei Shu. 2016. An efficient virtual machine consolidation scheme for
multimedia cloud computing. Sensors (Switzerland) 16, 2 (2016), 1–18. https://doi.org/10.3390/s16020246

[57] Taliver Heath, Ana Paula Centeno, Pradeep George, Luiz Ramos, Yogesh Jaluria, and Ricardo Bianchini. 2006. Mercury
and freon: temperature emulation and management for server systems. Proceedings of the 12th international conference
on Architectural support for programming languages and operating systems (2006), 106–116. https://doi.org/10.1145/
1168857.1168872

[58] Li Hongyou, Wang Jiangyong, Peng Jian, Wang Junfeng, and Liu Tang. 2013. Energy-aware scheduling scheme
using workload-aware consolidation technique in cloud data centres. China Communications 10, 12 (2013), 114–124.
https://doi.org/10.1109/CC.2013.6723884

[59] T. Horvath and K. Skadron. 2008. Multi-mode energy management for multi-tier server clusters. In 2008 International
Conference on Parallel Architectures and Compilation Techniques (PACT). 270–279.

[60] Intel IT Center. 2012. Big Data Analytics. Technical Report. 27 pages. https://doi.org/10.1007/978-3-319-10665-6
[61] Stefan Janacek, Kiril Schröder, Gunnar Schomaker, Wolfgang Nebel, Marco Rüschen, and Günter Pistoor. 2012.

Modeling and approaching a cost transparent, specific data center power consumption. 2012 International Conference
on Energy Aware Computing, ICEAC 2012 (2012). https://doi.org/10.1109/ICEAC.2012.6471012

[62] Mateusz Jarus, Ariel Oleksiak, Tomasz Piontek, and J Węglarz. 2013. Runtime power usage estimation of HPC servers
for various classes of real-life applications. Future Generation Computer Systems 36 (2013), 299–310.

[63] Yichao Jin, Yonggang Wen, Qinghua Chen, and Zuqing Zhu. 2013. An Empirical Investigation of the Impact
of Server Virtualization on Energy Efficiency for Green Data Center. Comput. J. 56, 8 (2013), 977–990. https:
//doi.org/10.1093/comjnl/bxt017

[64] Aman Kansal, Feng Zhao, Jie Liu, Nupur Kothari, and Arka A. Bhattacharya. 2010. Virtual machine power metering
and provisioning. Proceedings of the 1st ACM symposium on Cloud computing - SoCC ’10 (2010), 39. https://doi.org/10.
1145/1807128.1807136

[65] He Kejing, Li Zhibo, Deng Dongyan, and Chen Yanhua. 2017. Energy-Efficient Framework for Virtual Machine
Consolidation in Cloud Data Centers. 3536, c (2017), 1–13. https://doi.org/10.1109/ACCESS.2017.2711043

[66] Daniel C. Kilper, Gary Atkinson, Steven K. Korotky, Suresh Goyal, Peter Vetter, Dusan Suvakovic, and Oliver Blume.
2011. Power trends in communication networks. IEEE Journal on Selected Topics in Quantum Electronics 17, 2 (2011),
275–284. https://doi.org/10.1109/JSTQE.2010.2074187

[67] Ricardo Koller, Akshat Verma, and Anidya Neogi. 2010. WattApp : An Application Aware Power Meter for Shared
Data Centers. International Conference on Autonomic Computing (2010), 10. https://doi.org/10.1145/1809049.1809055

[68] Alexey Kopytov. 2006. SysBench manual. Test (2006). http://imysql.com/wp-content/uploads/2014/10/sysbench-
manual.pdf

[69] N Kord and H Haghighi. 2013. An energy-efficient approach for virtual machine placement in cloud based data
centers. Information and Knowledge Technology (IKT), 2013 5th Conference on (2013), 44–49. https://doi.org/10.1109/
IKT.2013.6620036

[70] Rainer Kress. 1998. Numerical analysis. Springer, New York, NY, USA.
[71] Etienne Le Sueur and Gernot Heiser. 2010. Dynamic voltage and frequency scaling: The laws of diminishing returns.

In Proceedings of the 2010 international conference on Power aware computing and systems. 1–8.

ACM Comput. Surv.

https://doi.org/10.1109/INFCOM.2012.6195719
https://doi.org/10.1016/j.energy.2012.04.037
https://doi.org/10.1016/j.energy.2012.04.037
http://www.brendangregg.com/perf.html
https://doi.org/10.1016/j.enbuild.2014.10.058
https://doi.org/10.1016/j.enbuild.2014.10.058
https://doi.org/10.3390/s16020246
https://doi.org/10.1145/1168857.1168872
https://doi.org/10.1145/1168857.1168872
https://doi.org/10.1109/CC.2013.6723884
https://doi.org/10.1007/978-3-319-10665-6
https://doi.org/10.1109/ICEAC.2012.6471012
https://doi.org/10.1093/comjnl/bxt017
https://doi.org/10.1093/comjnl/bxt017
https://doi.org/10.1145/1807128.1807136
https://doi.org/10.1145/1807128.1807136
https://doi.org/10.1109/ACCESS.2017.2711043
https://doi.org/10.1109/JSTQE.2010.2074187
https://doi.org/10.1145/1809049.1809055
http://imysql.com/wp-content/uploads/2014/10/sysbench-manual.pdf
http://imysql.com/wp-content/uploads/2014/10/sysbench-manual.pdf
https://doi.org/10.1109/IKT.2013.6620036
https://doi.org/10.1109/IKT.2013.6620036


Computing Server Power Modeling in a Data Center: Survey, Taxonomy and Performance Evaluation 39

[72] Young Choon Lee and Albert Y. Zomaya. 2012. Energy efficient utilization of resources in cloud computing systems.
The Journal of Supercomputing 60, 2 (2012), 268–280. https://doi.org/10.1007/s11227-010-0421-3

[73] Tao Li and Lizy Kurian John. 2003. Run-time modeling and estimation of operating system power consumption. ACM
SIGMETRICS Performance Evaluation Review 31 (2003), 160. https://doi.org/10.1145/885651.781048

[74] Yuanlong Li, Han Hu, Yonggang Wen, and Jun Zhang. 2016. Learning-based power prediction for data centre
operations via deep neural networks. Proceedings of the 5th International Workshop on Energy Efficient Data Centres -
E2DC ’16 (2016), 1–10. https://doi.org/10.1145/2940679.2940685

[75] Yanfei Li, YingWang, Bo Yin, and Lu Guan. 2012. An online power metering model for cloud environment. Proceedings
- IEEE 11th International Symposium on Network Computing and Applications, NCA 2012 (2012), 175–180. https:
//doi.org/10.1109/NCA.2012.10

[76] Chia Hung Lien, Ying Wen Bai, and Ming Bo Lin. 2007. Estimation by software for the power consumption of
streaming-media servers. IEEE Transactions on Instrumentation and Measurement 56, 5 (2007), 1859–1870. https:
//doi.org/10.1109/TIM.2007.904554

[77] Weiwei Lin, Wentai Wu, Haoyu Wang, James Z. Wang, and Ching-Hsien Hsu. 2018. Experimental and quantitative
analysis of server power model for cloud data centers. Future Generation Comp. Syst. 86 (2018), 940–950. https:
//doi.org/10.1016/j.future.2016.11.034

[78] Haikun Liu, Cheng-Zhong Xu, Hai Jin, Jiayu Gong, and Xiaofei Liao. 2011. Performance and energy modeling for
live migration of virtual machines. Proceedings of the 20th international symposium on High performance distributed
computing - HPDC ’11 May 2014 (2011), 171. https://doi.org/10.1145/1996130.1996154

[79] Liang Luo, Wenjun Wu, W.T. Tsai, Dichen Di, and Fei Zhang. 2013. Simulation of power consumption of cloud data
centers. Simulation Modelling Practice and Theory 39 (2013), 152 – 171. https://doi.org/10.1016/j.simpat.2013.08.004
S.I.Energy efficiency in grids and clouds.

[80] Theodosios Makris. 2017. Measuring and Analyzing Energy Consumption of the Data Center. Ph.D. Dissertation.
[81] Vimal Mathew, Ramesh K. Sitaraman, and Prashant Shenoy. 2012. Energy-aware load balancing in content delivery

networks. 2012 Proceedings IEEE INFOCOM (2012), 954–962. https://doi.org/10.1109/INFCOM.2012.6195846
[82] John C McCullough, Yuvraj Agarwal, Jaideep Chandrashekar, Sathyanarayan Kuppuswamy, Alex C Snoeren, and

Rajesh K Gupta. 2011. Evaluating the effectiveness of model-based power characterization. In USENIX Annual
Technical Conf, Vol. 20.

[83] David Meisner and Thomas F Wenisch. 2010. Peak power modeling for data center servers with switched-mode
power supplies. Proceedings of the 16th ACM/IEEE international symposium on Low power electronics and design (2010),
319–324. https://doi.org/10.1145/1840845.1840911

[84] Peter Mell and Timothy Grance. 2011. The NIST Definition of Cloud Computing Recommendations of the National
Institute of Standards and Technology. Nist Special Publication 145 (2011), 7. https://doi.org/10.1136/emj.2010.096966
arXiv:2305-0543

[85] Bryan Mills, Taieb Znati, Rami Melhem, Kurt B. Ferreira, and Ryan E. Grant. 2014. Energy consumption of resilience
mechanisms in large scale systems. Proceedings - 2014 22nd Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing, PDP 2014 (2014), 528–535. https://doi.org/10.1109/PDP.2014.111

[86] Christoph Möbius, Waltenegus Dargie, and Alexander Schill. 2013. Power consumption estimation models for
processors, virtual machines, and servers. IEEE Transactions on Parallel and Distributed Systems 25, 6 (2013), 1600–
1614.

[87] Mathijs Mortimer. 2018. iperf3 Documentation. (2018).
[88] Hitoshi Nagasaka and Naoya Maruyama. 2010. PPT: Statistical Power Modeling of GPU Kernels Using Performance

Counters GPGPU in Scientific Computing. Computing (2010).
[89] Riddhi Patel, Hitul Patel, and Sanjay Patel. 2015. Quality of Service Based Efficient Resource. International Journal

For Technological Research In Engineering 2, 9 (2015), 2008–2013.
[90] Massoud Pedram and Inkwon Hwang. 2010. Power and performance modeling in a virtualized server system.

Proceedings of the International Conference on Parallel Processing Workshops (2010), 520–526. https://doi.org/10.1109/
ICPPW.2010.76

[91] Steven Pelley, David Meisner, Thomas F Wenisch, and James W VanGilder. 2009. Understanding and abstracting total
data center power. In Workshop on Energy-Efficient Design, Vol. 11.

[92] Asfandyar Qureshi, Rick Weber, Hari Balakrishnan, John Guttag, and Bruce Maggs. 2009. Cutting the electric bill for
internet-scale systems. ACM SIGCOMM Computer Communication Review 39, 4 (2009), 123. https://doi.org/10.1145/
1594977.1592584

[93] Ramya Raghavendra, Parthasarathy Ranganathan, Vanish Talwar, Zhikui Wang, and Xiaoyun Zhu. 2008. No âĂĲ
Power âĂİ Struggles : Coordinated Multi-level Power Management for the Data Center. , 48–59 pages. https:
//doi.org/10.1145/1346281.1346289

ACM Comput. Surv.

https://doi.org/10.1007/s11227-010-0421-3
https://doi.org/10.1145/885651.781048
https://doi.org/10.1145/2940679.2940685
https://doi.org/10.1109/NCA.2012.10
https://doi.org/10.1109/NCA.2012.10
https://doi.org/10.1109/TIM.2007.904554
https://doi.org/10.1109/TIM.2007.904554
https://doi.org/10.1016/j.future.2016.11.034
https://doi.org/10.1016/j.future.2016.11.034
https://doi.org/10.1145/1996130.1996154
https://doi.org/10.1016/j.simpat.2013.08.004
https://doi.org/10.1109/INFCOM.2012.6195846
https://doi.org/10.1145/1840845.1840911
https://doi.org/10.1136/emj.2010.096966
http://arxiv.org/abs/2305-0543
https://doi.org/10.1109/PDP.2014.111
https://doi.org/10.1109/ICPPW.2010.76
https://doi.org/10.1109/ICPPW.2010.76
https://doi.org/10.1145/1594977.1592584
https://doi.org/10.1145/1594977.1592584
https://doi.org/10.1145/1346281.1346289
https://doi.org/10.1145/1346281.1346289


40 Leila Ismail and Huned Materwala

[94] AA Rahmanian, GH Dastghaibyfard, and H Tahayori. 2017. Penalty-aware and cost-efficient resource management in
cloud data centers. International Journal of Communication Systems 30, 8 (2017), e3179. https://doi.org/10.1002/dac.3179

[95] Patrick Raycroft, Ryan Jansen, Mateusz Jarus, and Paul R. Brenner. 2014. Performance bounded energy efficient
virtual machine allocation in the global cloud. Sustainable Computing: Informatics and Systems 4, 1 (2014), 1–9.
https://doi.org/10.1016/j.suscom.2013.07.001

[96] Douglas Reynolds. 2015. Gaussian mixture models. Encyclopedia of biometrics (2015), 827–832.
[97] Suzanne Rivoire, Parthasarathy Ranganathan, and Christos Kozyrakis. 2008. A comparison of high-level full-system

power models. Conference on Power aware computing and systems (HotPower 2008) (2008), 1–5.
[98] Suzanne Marion Rivoire. 2008. MODELS AND METRICS FOR ENERGY-EFFICIENT COMPUTER SYSTEMS. Ph.D.

Dissertation. Stanford University.
[99] Osman Sarood, Akhil Langer, Abhishek Gupta, and Laxmikant Kale. 2014. Maximizing Throughput of Overprovisioned

HPC Data Centers under a Strict Power Budget. International Conference for High Performance Computing, Networking,
Storage and Analysis, SC 2015-Janua, January (2014), 807–818. https://doi.org/10.1109/SC.2014.71

[100] Bernhard Scholkopf and Alexander J Smola. 2001. Learning with kernels: support vector machines, regularization,
optimization, and beyond. MIT press.

[101] Neeraj Sharma and Ram Mohana Guddeti. 2016. Multi-Objective Energy Efficient Virtual Machines Allocation at the
Cloud Data Center. IEEE Transactions on Services Computing 1374, c (2016), 1–1. https://doi.org/10.1109/TSC.2016.
2596289

[102] Donghwa Shin, Jihun Kim, Naehyuck Chang, Jinhang Choi, Sung Woo Chung, and Eui-Young Chung. 2009. Energy-
optimal dynamic thermal management for green computing. Proceedings of the 2009 International Conference on
Computer-Aided Design - ICCAD ’09 (2009), 652. https://doi.org/10.1145/1687399.1687520

[103] Richa Sinha, Nidhi Purohit, and Hiteshi Diwanji. 2011. Power aware live migration for data centers in Cloud
using dynamic threshold. International Journal of Computer Technology and Applications 2, 6 (2011), 2041–2046.
https://doi.org/10.1.1.658.4169

[104] JamesWilliam Smith, Ali Khajeh-Hosseini, Jonathan Stuart Ward, and Ian Sommerville. 2012. CloudMonitor : Profiling
Power Usage. In CLOUD ’12 Proceedings of the 2012 IEEE Fifth International Conference on Cloud Computing. 3–4.

[105] Richard Socher, Jeffrey Pennington, Eric H Huang, Andrew Y Ng, and Christopher D Manning. 2011. Semi-supervised
recursive autoencoders for predicting sentiment distributions. In Proceedings of the conference on empirical methods in
natural language processing. Association for Computational Linguistics, 151–161.

[106] Stanford. 2007. Regularization : Ridge Regression and the LASSO The Bias-Variance Tradeoff. Technical Report.
http://statweb.stanford.edu/{~}owen/courses/305/Rudyregularization.pdf

[107] Gang Sun, Vishal Anand, Dan Liao, Chuan Lu, Xiaoning Zhang, and Ning-Hai Bao. 2015. Power-Efficient Provisioning
for Online Virtual Network Requests in Cloud-Based Data Centers. IEEE Systems Journal 9 (2015), 427–441.

[108] Cheng Jen Tang and Miau Ru Dai. 2011. Dynamic computing resource adjustment for enhancing energy efficiency of
cloud service data centers. 2011 IEEE/SICE International Symposium on System Integration, SII 2011 (2011), 1159–1164.
https://doi.org/10.1109/SII.2011.6147613

[109] M. Tang and S. Pan. 2015. A Hybrid Genetic Algorithm for the Energy-Efficient Virtual Machine Placement Problem
in Data Centers. Neural Processing Letters 41, 2 (2015), 211–221. https://doi.org/10.1007/s11063-014-9339-8

[110] Tektronix. 2003. Digital Storage Oscilloscope. Technical Report 7. 2004 pages. https://doi.org/10.1002/ejoc.201200111
arXiv:arXiv:1011.1669v3

[111] Princeton University. 2018. The PARSEC Benchmark Suite. Retrieved April 25, 2019 from http://parsec.cs.princeton.
edu/index.htm

[112] Henk Vandenbergh. 2012. Vdbench Users Guide. October (2012), 1–114.
[113] Micha vor dem Berge, Georges Da Costa, Andreas Kopecki, Ariel Oleksiak, Jean-Marc Pierson, Tomasz Piontek,

Eugen Volk, and Stefan Wesner. 2012. Modeling and simulation of data center energy-efficiency in coolemall. In
International Workshop on Energy Efficient Data Centers. Springer, 25–36.

[114] Di Wang, Chuangang Ren, Sriram Govindan, Anand Sivasubramaniam, Bhuvan Urgaonkar, Aman Kansal, and Kusha-
gra Vaid. 2013. ACE: abstracting, characterizing and exploiting peaks and valleys in datacenter power consumption.
In ACM SIGMETRICS Performance Evaluation Review, Vol. 41. ACM, 333–334.

[115] Zhikui Wang, Niraj Tolia, and Cullen Bash. 2010. Opportunities and challenges to unify workload, power, and cooling
management in data centers. ACM SIGOPS Operating Systems Review 44, 3 (2010), 41. https://doi.org/10.1145/1842733.
1842741

[116] B.D. Wedlock and J.K. Roberge. 1969. Electronic components and measurements. Prentice-Hall.
[117] Yingyou Wen, Zhi Li, Shuyuan Jin, Chuan Lin, and Zheng Liu. 2017. Energy-Efficient Virtual Resource Dynamic

Integration Method in Cloud Computing. IEEE Access 5 (2017), 12214–12223. https://doi.org/10.1109/ACCESS.2017.
2721548

ACM Comput. Surv.

https://doi.org/10.1002/dac.3179
https://doi.org/10.1016/j.suscom.2013.07.001
https://doi.org/10.1109/SC.2014.71
https://doi.org/10.1109/TSC.2016.2596289
https://doi.org/10.1109/TSC.2016.2596289
https://doi.org/10.1145/1687399.1687520
https://doi.org/10.1.1.658.4169
http://statweb.stanford.edu/{~}owen/courses/305/Rudyregularization.pdf
https://doi.org/10.1109/SII.2011.6147613
https://doi.org/10.1007/s11063-014-9339-8
https://doi.org/10.1002/ejoc.201200111
http://arxiv.org/abs/arXiv:1011.1669v3
http://parsec.cs.princeton.edu/index.htm
http://parsec.cs.princeton.edu/index.htm
https://doi.org/10.1145/1842733.1842741
https://doi.org/10.1145/1842733.1842741
https://doi.org/10.1109/ACCESS.2017.2721548
https://doi.org/10.1109/ACCESS.2017.2721548


Computing Server Power Modeling in a Data Center: Survey, Taxonomy and Performance Evaluation 41

[118] BUSINESS WIRE. 2018. Global Data Center Services Market Growth, Trends, and Forecasts 2018-2023: Tier 4 Data
Center Type to Have the Highest Share. Retrieved April 25, 2019 from https://www.businesswire.com/news/home/
20180517005800/en/Global-Data-Center-Services-Market-Growth-Trends

[119] Michal Witkowski, Ariel Oleksiak, Tomasz Piontek, and J Węglarz. 2012. Practical power consumption estimation for
real life HPC applications. Future Generation Computer Systems 29, 1 (2012), 208–217.

[120] Wei Wu, Lingling Jin, Jun Yang, Pu Liu, and Sheldon X.-D. Tan. 2007. Efficient power modeling and software thermal
sensing for runtime temperature monitoring. ACM Transactions on Design Automation of Electronic Systems 12, 3
(2007), 26–es. https://doi.org/10.1145/1255456.1255462

[121] Hong Xu and Baochun Li. 2013. Reducing Electricity Demand Charge for Data Centers with Partial Execution. (2013),
51–61. https://doi.org/10.1145/2602044.2602048 arXiv:1307.5442

[122] X. Ye, Y. Yin, and L. Lan. 2017. Energy-Efficient Many-Objective Virtual Machine Placement Optimization in a Cloud
Computing Environment. IEEE Access 5 (2017), 16006–16020. https://doi.org/10.1109/ACCESS.2017.2733723

[123] Xiao Zhang, Jian Jun Lu, Xiao Qin, and Xiao Nan Zhao. 2013. A high-level energy consumption model for heteroge-
neous data centers. Simulation Modelling Practice and Theory 39 (2013), 41–55. https://doi.org/10.1016/j.simpat.2013.
05.006

[124] Kuangyu Zheng, Xiaodong Wang, Li Li, and Xiaorui Wang. 2014. Joint power optimization of data center network
and servers with correlation analysis. In IEEE INFOCOM 2014-IEEE Conference on Computer Communications. IEEE,
2598–2606.

ACM Comput. Surv.

https://www.businesswire.com/news/home/20180517005800/en/Global-Data-Center-Services-Market-Growth-Trends
https://www.businesswire.com/news/home/20180517005800/en/Global-Data-Center-Services-Market-Growth-Trends
https://doi.org/10.1145/1255456.1255462
https://doi.org/10.1145/2602044.2602048
http://arxiv.org/abs/1307.5442
https://doi.org/10.1109/ACCESS.2017.2733723
https://doi.org/10.1016/j.simpat.2013.05.006
https://doi.org/10.1016/j.simpat.2013.05.006

	Abstract
	1 Introduction
	2 Software-based Power Models
	2.1 Taxonomy of Software-based Power Models
	2.1.1 Linear Power Models
	2.1.1.1 Mathematical Formula: Single Variable Linear With Fixed Slope and Intercept (SVLF)
	2.1.1.2 Machine Learning Linear With Variable Slope and Intercept (MLLV)

	2.1.2 Non-Linear Models
	2.1.2.1 Mathematical Formula: Single Variable Non-Linear With Fixed Slope and Intercept (SVNLF)
	2.1.2.2 Machine Learning Non-Linear With Variable Slope and Intercept (MLNLV)


	2.2 Evaluated Works and Software-based Power Model Development Workflow

	3 PERFORMANCE ANALYSIS
	3.1 Experimental Environment
	3.2 Experiments
	3.3 Experimental Results Analysis
	3.3.1 Analysis of the Evaluated Works on Software-based Power Models in the Literature
	3.3.2 Analysis of our Experimental Results
	3.3.2.1 Single Variable CPU-based Power Models for Validating Data Set
	3.3.2.2 Single Variable Throughput-based Power Models for Validating Data Set
	3.3.2.3 Multi Variable Power Models for Validating Data Set
	3.3.2.4 Software-based Power Models for Testing Data Set



	4 RELATED WORKS
	5 Conclusion
	Acknowledgments
	References

