e | ERT-EU
amergency —
response -/

team | for the EU institubons, bodiea
and agencies

CERT-EU Security Whitepaper 16-002

Weaknesses in Diffie-Hellman Key
Exchange Protocol

Vicente REVUELTO, Krzysztof SOCHA
ver. 1.0

July 7, 2016

TLP: WHITE




Summary

Recently, there have been some discussions about the minimum key length in public-
key cryptography — more precisely in the Diffie-Hellman (DH) protocol — in order to be
considered secure against state-level attackers [6].

DH is used often to negotiate session key over an insecure channel. DH relies on Dis-
crete Logarithm Cryptography (DLC), which is comprised of both Finite Field Cryp-
tography (FFC) and Elliptic Curve Cryptography (ECC). FFC is the public-key crypto-
graphic methods using operations in a multiplicative group of a finite field. ECC is the
public-key cryptographic methods using operations in an elliptic curve group. In order to
use FFC, both peers have to share some domain parameters. Some of the elements that
have to be shared by the peers as part of these domain parameters, is a multiplicative
group in a finite field with prime p elements (called GF(p)), and one of its subgroups or
at least the parameters to generate them [9]. It appears that often many applications
tend to use standardized or hard-coded FFC domain parameters. An attack described
recently allows to get the common secret from this information shared over an insecure
channel [6]. This attack is based on prior knowledge of the domain parameters used to
sequentialize the attack to an ongoing key establishment. Pre-computing the phases of
the attack depends only on the FCC domain parameters.

There have been estimations that — with the resources available to an academic team — it
is possible to do the pre-computation for a prime p with 768 bits of length, dramatically
reducing the strength of the group used by FFC, also called DH group [10]. However,
it is likely that the same can be possible for 1024-bit-long primes with the nation-state-
level resources.

Diffie-Hellman Protocol

The DH protocol is a cornerstone of modern cryptography, and it is used for VPN,
HTTPS websites, email, and many other protocols (many based on SSL/TLS). For ex-
ample, this protocol is used at the beginning of the connection by VPNs based on IPSEC
in order to negotiate the session key used by block symmetric cyphers during the rest
of the session.

The popularity of DH is due to the fact that the DH protocol allows two peers to securely
agree on a common secret after a negotiation over an insecure channel. Only public
information needs to be transmitted and complementary secret information is kept by
the peers [3].



Weaknesses

Common Domain Parameters

The current best technique for attacking Diffie-Hellman relies on compromising one
of the private keys by computing the discrete log of the corresponding public value
in the DH group. As mentioned above, this group — or the parameters to generate
it — are previously shared in clear as part of the FCC domain parameters. However,
an adversary who performs a large pre-computation for a prime p can then quickly
calculate arbitrary discrete logs in that group, amortizing the cost over all targets that
share this parameter [6].

This attack takes advantage of the fact that an adversary can perform a single enormous
computation to crack a particular prime and then easily break any individual connection
that uses that prime [2]. The attacker can start with the phase of the attack which only
depends on the prime. This can be done in advance, which leaves only the second phase
to be done on-the-fly for any particular connection.

Websites that use one of a few commonly shared 1024-bit Diffie-Hellman groups may be
susceptible to passive eavesdropping from an attacker with nation-state-level resources.
The table below shows how various protocols would be affected if a single 1024-bit
group was broken in each protocol, assuming a typical up-to-date client (e.g., most
recent version of OpenSSH or up-to-date installation of Chrome) [4]:

Protocol Vulnerable %
HTTPS - Top 1 Million Domains 17.9%
HTTPS - Browser Trusted Sites 6.6%
SSH - IPv4 Address Space 25.7%
IKEv1 (IPsec VPNs) — IPv4 Address Space 66.1%

Logjam Attacks

On the 9th of June, CERT-EU published an advisory concerning the Logjam attack [1].
It is a man-in-the-middle attack, which allows an attacker to force the negotiation of
512-bit-long keys in order to break encrypted communications. It concerns websites,
mail servers, and other SSL/TLS-dependent services that support DHE_EXPORT ciphers.

Based on some Internet-wide scanning to measure who is vulnerable [4], the following
estimates can be made:

Protocol Vulnerable %
HTTPS - Top 1 Million Domains 8.4%
HTTPS - Browser Trusted Sites 3.4%
SMTP+StartTLS — IPv4 Address Space 14.8%
POP3S - IPv4 Address Space 8.9%
IMAPS — IPv4 Address Space 8.4%




Recommendations

Generally speaking, avoiding the use of common domain parameters or increasing the
minimum key strengths to use primes of 2048 bits or larger in FCC can address this
issue. The second approach relies on the expected complexity of the calculations for
bigger groups, which makes the pre-computation phase out of the practical scope of
the known algorithms. The second approach just avoids that pre-computation phases
can be reused. So, in the short-term, it is suggested to use a 2048-bit DH group or
larger. This group can be a standard DH group (as those standardized for the IETF
[10, 23]) or a unique 2048-bit DH group generated following the specifications in NISP
SP-186-4, and especially the Appendix A [11]. If — for compatibility — it is needed
to use primes of 1024 bits, then the groups must be generated ad-hoc following the
previous recommendation.

In the medium-term, transitioning to Elliptic Curve Diffie-Hellman (DH ECC) key ex-
change with appropriate parameters avoids all known feasible crypt-analytic attacks.
Current elliptic curve discrete-log algorithms for strong curves do not gain as much
of an advantage from pre-computation [6]. On the other hand, it is important to pay
attention to the implementation of these protocols, because some of them have well
known problems as well [12]. Some curves are undergoing scrutiny and new curves,
such as Curve25519, are being standardized by the IETF for use in Internet protocols
[6, 13]. Some comparisons between available curves can be found in the references
[14].

It is also important to carefully consider other aspects affecting the security strength
of an implementation !. For example, the security strength assumes that the random
number generator has been provided with adequate entropy to support the desired
security strength [15].

For System Administrators

Being consistent with the general recommendations listed above, we are collecting here
some recommended configurations for some products that we think might be of interest
for our constituency. These recommendations are mainly based on those listed on the
weakdh.org site [5]. They are considering two steps:

* setting up a safe cipher suites (to increase the key strength), and
 providing the unique group you have previously created to your server, if possible.

The decision about using standard groups or generating new ones, depends on opera-
tional reasons, such as availability of platforms which allow to use them, and availabil-
ity of procedures for secure generation and reliable distribution.

An easy way to securely generate a new 2048 group, in order to be used by different
servers is to use OpenSSL:

openssl dhparam -out dhparams.pem 2048

IThere have been concerns about weaknesses into at least one elliptic curve-based pseudo-random
generator [7]. One analysis concluded that an adversary in possession of the algorithm’s secret key could
obtain encryption keys given only 32 bytes of ciphertext [8].



Apache HTTP Server (mod__ssl)

Disable SSL support enabling only TLS. To do that edit httpd.conf:

SSLProtocol all -SSLv2 -SSLv3

SSLCipherSuite ECDHE-RSA-AES128-GCM-SHA256 : ECDHE-ECDSA-AES128-GCM-SHA256 : ECDHE-RSA-
AES256-GCM-SHA384 : ECDHE-ECDSA-AES256-GCM-SHA384 : DHE-RSA-AES128-GCM-SHA256 : DHE-DSS-AES128
-GCM-SHA256 : kKEDH+AESGCM : ECDHE-RSA-AES128-SHA256 : ECDHE-ECDSA-AES128-SHA256 : ECDHE-RSA-
AES128-SHA :ECDHE-ECDSA-AES128-SHA : ECDHE-RSA-AES256-SHA384 : ECDHE-ECDSA-AES256-SHA384 : ECDHE-
RSA-AES256-SHA : ECDHE-ECDSA-AES256-SHA : DHE-RSA-AES128-SHA256 : DHE-RSA-AES128-SHA : DHE-DSS-
AES128-SHA256 : DHE-RSA-AES256-SHA256 : DHE-DSS-AES256-SHA : DHE-RSA-AES256-SHA : AES128-GCM-
SHA256: AES256-GCM-SHA384 : AES128-SHA256 : AES256-SHA256 : AES128-SHA : AES256-SHA : AES : CAMELLIA :DES-
CBC3-SHA: 'aNULL: !eNULL: !EXPORT: !DES: 'RC4: !MD5: | PSK: !aECDH: ! EDH-DSS-DES-CBC3-SHA: ! EDH-RSA-
DES-CBC3-SHA: 'KRB5-DES-CBC3-SHA

SSLHonorCipherQOrder on

In order to specify the new generated group, in newer versions of Apache (2.4.8 and
newer) and OpenSSL 1.0.2 or later, you can directly specify your DH parameters in the
previous file:

SSLOpenSSLConfCmd DHParameters "<path to dhparams.pem>"

Microsoft IIS

Microsoft relies on increasing the key strength and setting up standard DH groups from
the IETF, more than generating unique groups. On the other hand, strong DH ECC is
supported.

Follow these steps in order to set up a cipher suite in ISS:

* Open the Group Policy Object Editor (i.e. run gpedit.msc in the command
prompt).

* Expand Computer Configuration, Administrative Templates, Network, and
then click SSL Configuration Settings.

* Under SSL Configuration Settings, open the SSL Cipher Suite Order setting.

e Set up a strong cipher suite from those supported by Microsoft [16] following the
previous recommendations.

From the generic Windows Server TLS/SSL implementation using the Schannel Secu-
rity Service Provider (SSP) it worths to review [17]. Especially, for information about
restricting algorithms and protocols in Schannel, see [18].

CISCO SYSTEMS

The generic document from Cisco providing cryptographic guidance is Next Generation
Encryption [19]. As Microsoft, Cisco keeps relying on increasing the key strength and
setting up standard DH groups from the IETF (as Group 15 or 19 [10]), more than
generating unique groups. On the other hand, strong DH ECC is supported.



The following example shows a Cisco I0S Software IKE configuration that uses 128-bit
AES for encryption, pre-shared key authentication, and 256-bit ECDH (Group 19):

crypto isakmp policy 10
encryption aes
authentication pre-share
group 19

The following example shows a Cisco IOS Software IKEv2 proposal configuration that
uses 256-bit CBC-mode AES for encryption, SHA-256 for the hash, and 3072-bit DH
(Group 15):

crypto ikev2 proposal my-ikev2-proposal
encryption aes-cbc-256

integrity sha256

group 15

OpenSSH

These recommendations are following [20] in addition to [5].

The following key exchange mechanisms are supported in the version (6.8) of
OpenSSH:

* curve2b519-sha256@libssh.org

* ecdh-sha2-nistp256

* ecdh-sha2-nistp384

* ecdh-sha2-nistpb21

* diffie-hellman-groupl-shal

* diffie-hellman-groupl4-shal

* diffie-hellman-group-exchange-shal

* diffie-hellman-group-exchange-sha256

So, in the latest versions, strong cryptography based on DH ECC is supported but on the
other hand, Group 1, which uses well known prime numbers is also supported. The first
and easiest option is to force clients to use elliptic curve Diffie-Hellman. Specifically,
Curve 25519. This can be accomplished by setting your by setting your sshd_config
as follows:

KexAlgorithms curve25519-sha256@libssh.org

If you want to continue to support DH FFC, at the very least, you should disable Group
1 support, by removing the diffie-hellman-groupl-shal Key Exchange. It is fine to
leave diffie-hellman-groupl4-shal, which uses a 2048-bit prime.

The diffie-hellman-group-exchange-shal and diffie-hellman-group-exchange-sha256
mechanisms let the client and server negotiate a custom DH group. The client sends

a tuple (min, n, max) to the server, indicating the client’s minimum, preferred, and
maximum group size, according to [21].

The OpenSSH server selects a suitable group from a pre-generated set of groups, in-
stalled system-wide in /etc/ssh/moduli (falling back to /etc/ssh/primes), using the
choose_dh function in dh.c. In case no suitable group is found, the code defaults to
Oakley Group 14, which is safe. A pre-generated set is distributed with the OpenSSH



source and many binary distributions and is infrequently changed. The group sizes dis-
tributed with OpenSSH are 1024, 1536, 2048, 3072, 4096, 6144, and 8192 bits, with
about 30 groups per size. As mentioned, the OpenSSH-distributed 1024-bit groups are
well-known and within the range of being a viable target for nation-state attackers, and
as such should not be used.

It is also an option to generate new DH groups:

ssh-keygen -G moduli-2048.candidates -b 2048
ssh-keygen -T moduli-2048 -f moduli-2048.candidates

You then need to install moduli-2048 to your system’s moduli file. In Debian/Ubuntu,
this is located at /etc/ssh/moduli. SSH chooses (practically randomly) from this file,
so you should replace your existing moduli file with the new groups you generated
instead of appending these new groups.

For Client Systems

Browsers should be patched and updated to the most recent version in order to sup-
port most recent cipher suites. It might be interesting taking a look the recommended
configurations in [22] in other to check clients compatibility with strong cryptography.

For Developers

Make sure the cryptographic libraries you use are updated — especially, but not only, for
SSL/TLS.

References

[1] https://cert.europa.eu/static/SecurityAdvisories/CERT-EU-SA2015-325.txt
[2] https://freedom-to-tinker.com/blog/haldermanheninger/how-is-nsa-breaking-so-much-crypto
[3] https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key exchange

[4] https://weakdh.org/

[5] https://weakdh.org/sysadmin.html

[6] https://weakdh.org/imperfect-forward-secrecy.pdf

[71 https://www.schneier.com/essay-198.html

[8] http://rump2007.cr.yp.to/15-shumow.pdf

[9] http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
[10] https://tools.ietf.org/html/rfc5114

[11] http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf


https://cert.europa.eu/static/SecurityAdvisories/CERT-EU-SA2015-325.txt
https://freedom-to-tinker.com/blog/haldermanheninger/how-is-nsa-breaking-so-much-crypto
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://weakdh.org/
https://weakdh.org/sysadmin.html
https://weakdh.org/imperfect-forward-secrecy.pdf
https://www.schneier.com/essay-198.html
http://rump2007.cr.yp.to/15-shumow.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
https://tools.ietf.org/html/rfc5114
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

[12] https://cryptome.org/2013/11/ecc-practice.pdf

[13] https://tools.ietf.org/html/draft-ietf-tls-curve25519-01

[14] http://safecurves.cr.yp.to/

[15] http://csrc.nist.gov/publications/drafts/800-57/sp800-57p1r4 draft.pdf

[16] https://technet.microsoft.com/en-us/library/dn786419.aspx

[17] https://technet.microsoft.com/en-us/library/hh831381.aspx

[18] https://support.microsoft.com/en-us/kb/245030

[19] http://www.cisco.com/web/about/security/intelligence/nextgen_crypto.html
[20] https://jbeekman.nl/blog/2015/05/ssh-logjam/

[21] https://www.ietf.org/rfc/rfc4419.txt

[22] https://wiki.mozilla.org/Security/Server Side TLS#Recommended configurations
[23] https://www.ietf.org/rfc/rfc3526.txt


https://cryptome.org/2013/11/ecc-practice.pdf
https://tools.ietf.org/html/draft-ietf-tls-curve25519-01
http://safecurves.cr.yp.to/
http://csrc.nist.gov/publications/drafts/800-57/sp800-57p1r4_draft.pdf
https://technet.microsoft.com/en-us/library/dn786419.aspx
https://technet.microsoft.com/en-us/library/hh831381.aspx
https://support.microsoft.com/en-us/kb/245030
http://www.cisco.com/web/about/security/intelligence/nextgen_crypto.html
https://jbeekman.nl/blog/2015/05/ssh-logjam/
https://www.ietf.org/rfc/rfc4419.txt
https://wiki.mozilla.org/Security/Server_Side_TLS#Recommended_configurations
https://www.ietf.org/rfc/rfc3526.txt

	Summary
	Diffie-Hellman Protocol
	Weaknesses
	Common Domain Parameters
	Logjam Attacks

	Recommendations
	For System Administrators
	Apache HTTP Server (mod_ssl)
	Microsoft IIS
	CISCO SYSTEMS
	OpenSSH

	For Client Systems
	For Developers

	References

